
AFHRL-TR-89-25

KEATS: A SYSTEM TO SUPPORT KNOWLEDGE
ENGINEERING AND TRAINING FOR

AIR FORCE 8DECISION-MAKING SKILLS

H FritzH. Brecke DTIC
wn Patrick HaysS ELECTE
(0 U Donald Johnston JAN0 3 19900

Gall Slemon
Jane McGarvey B(0 Susan Peters

A Logicon, Incorporated"
Tactical and Training Systems Division

4010 Sorrento Valley BoulevardN San Diego, California 92138-5158

LOGISTICS AND HUMAN FACTORS DIVISION

R Wright-Patterson Air Force Base, Ohio 45433-6503

E
S December 1989

0 Interim Technical Report for Period November 1986 - May 1989

U
R Approved for public release; distribution is unlimited.

C

E
S LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

90 01 03 032

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the
United States Government incurs no responsibility or any obligation whatsoever.
The fact that the Government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to the National
Technical Information Service, where it will be available to the general public,
including foreign nationals.

This report has been reviewed and is approved for publication.

MICHAEL J. YOUNG, Contract Monitor
Logistics and Human Factors Division

BERTRAM W. CREAM, Technical Director
Logistics and Human Factors Division

HAROLD G. JENSEN, Colonel, USAF
Commander

REPORT DOCUMENTATION PAGE Kon owleovge

Ernem rn fand Tramning of nform ison Sk wla" I ourll ff ri"Plls . Iini a Clow for n - F33615--Cuctia a-0 dand~rl~ I f~H~llf n €ltl Mn LI & co~n off gte Cllectio (W o f iftnion. =cciennients regadin th bude or a"' ow Rom4 of
In=Ws .o- , n duo."nt omtc redcig this burden. to Wmncrion 4tedurters Setv~c ectmorate, for infOrintion opriin mW flp 121IS
O0nnf Higway. suity 1 204. Arhin .o'" 2222.4302. and to the O~fkQc Of M0844"e~t SIXI Bud" I'Soaro Reuto F10 (Q0"40I1f. W41Wnqton. 0(20S03.

1. AGENCY USE ONLY (Leave bn 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1989H Interim D d November 1986 to May 1989

4. TITLE AND SUBTITLE S. FUOING NUMBERS

KEATS: A System to Support Knowledge

Engineering and Training for Decision-Making Skills C - F33615-86-C-0020
PE - 62205F

C. AUTHOR(S) PR - 3017

Fritz H. Brecke Donald Johnston Jane McGarvey TA - 08

Patrick Hays Gail Slemon Susan Peters WU - 15

7. PERFORMING ORGANIZATION NAME(S) AND A ODRESS(ES) 8. PERFORMING ORGANIZATION

Logicon, Incorporated REPORT NUMBER

Tactical and Training Systems Division

4010 Sorrento Valley Boulevard

San Diego, California 92138-5158

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

Logistics and Human Factors Division AFHRL-TR-89-25

Air Force Human Resources Laboratory

Wright-Patterson Air Force Base, Ohio 45433-6503

11. SUPrtEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report presents the development of advanced training technologies for decision-making skills.
Training systeis must, like decision aids, be based on expert knowledge of the target decision domain.

Initial knowledge acquisition activities using structured and focused interview techniques to access

the domain knowledge of decision makers in Air Force command and control nodes (Air Support Operations
Centers or ASOCs) led to the identification of five types of methodological problems. The report
describes and illustrates these problems, as well as a computer-based tool which is at least a partial

solution to three of the five problems. This tool, the Knowledge Engineering and Training System
(KEATS), is a software shell written in Smalltalk which runs on PC/AT-type machines. KEATS permits the

utilization of domain expert knowledge in the generation of detailed and realistic decision scenarios.
Once created, these decision scenarios provide the stimulus for either training or knowledge

engineering. KEATS was subjected to a 2-day formative evaluation trial with two experts. The trial
was a successful demonstration of the concept of computer-aided knowledge engineering. The results are
described, and conclusions and recommendations are offered. -1/

14. SUBJECT TERMS /IS. NUMBER OF PAGES
computer-based training knowledge acquisition tactical comuand 18
decision-making training \ koldengeern and contro 16 RCECD

expert knowledge microcomputer5-, 1
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
P"W besd &V' AN1$ id 134.4

SUMMARY

Battle managers assigned to Air Force Tactical Air Control Systems need to be competent decision

makers. Improved technologies are required to develop and deliver training in decision-making skils at

an affordable cost. Training should be available at peacetime duty stations, run on microcomputers

available at the squadron level, and not require instructors.

The initial focus of the present effort was on acquisition of instructional content. Instructional content

for decision training consists of the task knowledge employed by experts during the act of making

decisions. This task knowledge resides in the minds of experts and must be made explicit. One way is

with the aid of knowledge engineering techniques. Task analysis techniques have proven to be ineffective

for this purpose. Unaided, interview-type knowledge engineering methods were successful up to a point

but encountered significant problems. A computer-based (Smalltalk and PC/AT) Knowledge Engineering

and Training System (KEATS) was developed to aid in the knowledge acquisition process and to

overcome the problems encountered. KEATS is the first of two training system prototypes to be

developed under this project.

To date, KEATS has been used as a knowledge engineering support tool during a 2-day form itive

evaluation trial with two experts. Schemas for situation assessment and plans, and 64 rules for air request

tasking, were identified, along ith 23 requirements for functional changes of KEATS.

Although much additional work remains to be done, the results are interpreted as an initial proof of

concept for the KEATS tool. More empirical tests are required to determine whether the problems that

gave rise to KEATS development are solved. Continued use of KEATS for knowledge acquisition to

develop a second training system and use of KEATS in similar decision domains is recommended.

v'' \ Aceesslon For'

DTIC TAB C
Unarmomced
Justifioatio-

By
DAstributionli

Avalabijity Codes
A vail sor

Dist Speoial

PREFACE

With its establishment in 1980, the Logistics and Human Factors Division's Ground Operations

Branch, a part of the Air Force Human Resources Laboratory (AFHRL/LRG) at Wright-Patterson AFB,

began a comprehensive program to develop advanced techology to improve training for USAF Tactical

Command and Control (C2) Battle Staff personnel.

This report covers a research project which centered around the use of knowledge engineering

techniques to acquire instructional content for tactical C2 decision training. A Knowledge Engineering

and Training System (KEATS) was developed. This document describes why KEATS was developed, its

functional characteristics, and its first application.

The project is guided by Mr. Michael J. Young of AFHRL/LRG and executed by Logicon's Tactical

and Training Systems Division in San Diego, California, under the direction of Fritz H. Brecke. Logicon

team members include: Patrick Hays, Donald Johnston, Gail Slemon, Jane McGarvey, and Susan Peters.

Particularly heartfelt thanks go to the Air Force subject-matter experts: Lt Col Fred Wilson, Lt Col Lynn

Weber, Lt Col Matt Szczepanek, and Maj Ken Dekay.

TABLE OF CONTENTS

I. PROBLEM...1

II. APPROACH ... 3

O verview 3

The Study D om ain... 6

Unaided Knowledge Acquisition 10

Computer-Aided Knowledge Acquisition 15

Summary ... 34

11. RESULTS ... 34

M ethod 34

Knowledge Product.. 35

C ost 39

S um m ary 39

IV. DISCUSSION AND CONCLUSIONS .. 40

E fficacy of the Prototype .. 41

Transfer to O ther Dom ains .. 48

V . FUTURE DIRECTIO N S ... 49

R E F E R E N C E S 51

L IST O F A C RO N Y M S .. 53

APPENDIX: KEATS OBJECT CLASSES .. 55

iii

LIST OF FIGURES

I Approach to Training Technology Development 4

2 Project Study Domain: Air Support Operations Center (ASOC) 7

3 Factors Considered by Tactical Command and Control Decision Makers 10

4 K EA T S M ain M enu . .. 17

5 K EA T S Building M ode ... 18

6 Exercise Flow in K EA T S ... 19

7 Zoomed Full-Screen Display in KEATS 25

8 Ask and Tell Communications in KEATS 27

9 Sample Paper-Based Fictitious: Agenda from a Fictitious Scenario 30

10 KEATS Architectural Components for TRAINING and
KNOWLEDGE ENGINEERING .. 31

11 Plan of Action Differences in Identical Situations 37

LIST OF TABLES

Table

1 Unaided Knowledge Acquisition Activities 12

2 Knowledge Elicitation Queries in KEATS 21

3 KEATS Hardware and Software Requirements 33

4 Productivity During Knowledge Elicitation 35

5 Content Elements in Situation Assessments 36

6 Number of Rules Obtained by Topic 38

7 M anhour Ccst of Knowledge Acquisitions 39

iv

I. PROBLEM

Effective utilization of tactical combat assets depends to a very large extent on the cognitive skills of

personnel who assign combat assets to objectives or targets. Such decision-making functions are generally

performed by "battle managers"; i.e., officers assigned to Tactical Command and Control (C2) systems in

all services. Rapid, accurate decision making is therefore a critical combat skill for tactical battlestaff

officers. This skill is expected to be acquired during various types of large- and small-scale exercises

which occupy most of the peacetime duty time (over 80%) of officers assigned to the Air Force Tactical

Air Control System (TACS). Small-scale exercises, which are usually controlled and staged by individual

nodes of the TACS, focus on procedural and mechanical skills. Large-scale exercises are usually the only

training opportunities for complex tactical C 2 decision-making skills.

Large-scale exercises can involve many TACS nodes or an entire TACS network. They are of two

types- Field Training Exercises (FTXs), which involve actual troop and aircraft movements; or

Command Post Exercises (CPXs), which involve simulated movements. The best currently available

technology for decision-making training is that used in CPXs; i.e., computer-based simulations running

on medium- and large-scale computer systems. Simply buying more of this technology and thus scIving

the problem of training availability would be a prohibitively expensive solution to the decision training

problem. There is a clear need for technology that utilizes desk-top microcomputers.

Developing such technology means more than merely offloading current tactical battle simulation

technologies to microcomputers or, vice versa, simply waiting for microcomputer technology to reach the

required levels of computing power and storage capacity. Current simulation technology is still manpower-

intensive and thus impractical at the unit level. Means must therefore be found to replace human

participants with intelligent artificial participants and to reduce exercise preparation costs by well-designed

exercise editing packages. And finally, means must be found to model a reasonably intelligent and hostile

opponent who follows doctrines and procedures that are "alien" (i.e., different from ours). All of this is

becoming increasingly feasible; the modeling problem is becoming easier to solve with modern

programming techniques and languages, and hardware that is powerful enough to run such models is now

available.

Developing decision training technology is ultimately not a task that can be accomplished by computer

engineering alone; it takes "cognitive engineering" (Rasmussen, 1986) as well. Montague (1986)

expressed this notion as follows: "The analysis of competent performance and its development that must

be done to plan instruction must include cognitive organization and structures, and attend to the phases

and processes involved in acquisition." In more general terms, any attempt at developing improved

training and/or training design technologies should really be an attempt at translating a theory into

common practice.

The current project was launched because there is good reason to believe a relevant scientific base has

emerged in recent years as a consequence of progress made in cognitive psychology and cognitive science.

Since Nickerson and Feehrer's (1975) landmark report, an entire new body of knowledge has emerged

that deals with the nature and acquisition of expertise. This work, much of which was sparked by research

and development (R&D) on differences between novices and experts, has prompted a keen appreciation

of the role of domain knowledge in expertise and has spawned powerful new concepts and theories

dealing with the representation of knowledge and its acquisition. If it is possible to synthesize this new

research knowledge to the extent that prescriptive instructional design principles can be formulated, then

more elegant solutions to the decision training problem can be put into practice than those represented by

the raw high-fidelity simulation approach. Hopefully such solutions can be implemented with affordable

and practically available computer resources.

The need for more affordable decision training technology has been recognized and R&D efforts to

produce such technologies have been accomplished. Wilson (1982) wrote a master's thesis at the Naval

Postgraduate School describing an "Interactive Micro-Computer Wargame for an Air Battle" which ran

on an Apple Ill and was written in UCSD Pascal. Obermayer, Johnston, Slemon, and Hicklin (1984)

reported the development of a micro-based (WICAT System 150) multi-user system which simulated a

simple Anti-Submarine Warfare (AS\V) scenario. The system served as a research prototype; it required

player decision inputs and featured one artificial, knowledge-based team member. Madni, Ahlers, and

Chu (1987) demonstrated the modeling of an intelligent opponent in a knowledge-based simulation

prototype running on a Symbolics 3670 workstation. The prototype was designed to train Tactical Action

Officers in the kind of decision-making skills needed during naval surface warfare. The Army Research

Institute for the Behavioral and Social Sciences has focused on experimental Computer-Aided Instruction

(CAI) in the training of decision-making skills for armor officers. One result of this work is the "Armor

Tactical Concepts Tutor (ARTACT)," which runs on the Army's microcomputer-based Electronic

Information Delivery System (EIDS). Stoddard, Kern, and Emerson (1986) announced the development

of a cognitive skills tutor which continues and expands the ARTACT work.

2

For the program reported here, the overall goal was to add to this emerging technological base that

enables training of combat-critical, complex cognitive skills (such as decision making). The specific

objective is a set of training design guidelines for creating interactive training experiences which:

Reliably cause the acquisition of decision-making skills; and

Are presented by means of microcomputer media without a human instructor.

This objective is restrictive because we are interested in a method to design training systems for a

specific purpose; namely, training of decision-making skills. Ideally, the design methodology should be

employable by subject-matter experts (SMEs) without the help of training experts. This ideal may not be

attainable within this effort but it is the overall goal.

This report covers work accomplished during the first 2 years of a 3-year effort. The report covers

approaches to the overall problem and the subproblems, and results to date. The results are discussed

from the perspective of the current stage of the project and much may change as the project goes through

its final phase. The report closes with a projection as to what we hope to achieve by the end of the third

and final project year.

II. APPROACH

Overview

The approach used in this project is illustrated in Figure 1. The project in its entirety is viewed as an

Instructional Systems Design (ISD) problem, where a generic training design solution for a class of skills is

sought. The inputs to the problem are the following broadly specified instructional variables:

a. Training Objective Specified as a class of skills to be trained:
Decision-Making Skills

b. Target Population Battlestaff Officers assigned to elements of Air Force
Tactical Command and Control Systems

c. Delivery System Microcomputer resources available at wing or
squadron level; self-instructional methods
(no instructor)

The desired output is empirically validated design guidelines that can be used to develop training packages

which reliably teach tactical C2decision-making skills.

3

OBJECTIVE,
POPULA TION,

DELIVERY
SYSTEM

THOY BASE STUDY DOMAI

KNOWLEDGE
ENGINEERING
TECHNIQUES

INUCTIONAL INSTRUCTIONAL
STRATEGY CONTENT

(COMPUTER'.TOOLS

TRAINING SYSTEM
PROTOTYPES

Figure 1. Approach to Training Technology Development.

4

In order to solve this general ISD problem, two additional instructional variables, besides those

specified as problem inputs, must be defined (see Merrill & Wood, 1974; for a more formal treatment,

see Frank, 1969):

a. Instructional Strategy Types of instructional actions and the conditions for
their sequencing

b. Instructional Content Classes and instances of domain knowledge

A generic instructional strategy for training decision-making skills is either available (in ISD manuals)

or should be specifiable from a theoretical and empirical base. The instructional content is tne domain

knowledge employed by battle managers during the performance of decision-making tasks. This

knowledge does not exist in explicit form (manuals or regulations).

Making this knowledge explicit is difficult. An earlier effort (Brecke, Jacobs, & Krebs, 1988) showed

that conventional ISD task analysis methods work well for procedural skills but are ineffective in capturing

the detailed task knowledge employed in higher level cognitive tasks. An alternate technique, developed

and employed by the same researchers, approached the problem by eliciting cognitive maps as

representations of task knowledge. This technique, while much more efficient as a task analysis metiod,

was equally ineffective in capturing task knowledge for cognitive tasks.

The approach chosen in this project is based on the idea of applying knowledge engineering

techniques used in expert systems development to the problem of acquiring cognitive task knowledge or

instructional content. This approach requires access to personnel who are expert decision makers in some

subdomain of Tactical Command and Control. The subdomain should be representative of the larger

domain of Tactical Command and Control to allow later generalization. It should also be small and

bounded enough to allow treatment within the project's time and manpower constraints.

Once the two variables of instructional content and strategy are defined, it is possible to specify,

design, and develop prototype training systems that are specific instantiations of the generic instructional

strategy, that use the acquired instructional content, and that reflect the implementation constraints

imposed by the features and limitations of extant microcomputer hardware and software.

The prototypes should be subjected to cycles of formative evaluation trials and revisions. The eventual

product is a validated instructional strategy, together with guidelines for its application to particular

decision domains. This is what Montague (1986) called "instructional design heuristics."

It should be noted that this approach is idealized, especially with respect to the repeated evaluaion

and revision cycles of multiple training system prototypes. The funding for this project does not permit

more than the development of two limited prototypes and very limited evaluation work. Nevertheless, it

provides the necessary beginning.

REPORT SCOPE

Phase I of the project (4 months in duration) was devoted to exploration and preparation. Four major

activities were performed:

1. Exploration of the theory base which could give rise to prescriptive instructional design
principles or instructional strategies,

2. Identification and exploration of a suitable decision-making domain,

3. Evaluation and selection of hardware and software to be used as a development
environment, and

4. Development of concepts and initial architectures for a decision-making training system
prototype.

During Phase II, work concentrated on the acquisition of domain knowledge and on the search for a

generic instructional strategy. The latter is in progress but not yet far enough along to justify treatment in

the present rtport. The efforts in domain knowledge acquisition have led to the development of a

computer-based knowledge acquisition support system that potentially can double as a training system for

decision-making skills. This system is a prototype of a new technology. The remainder of this report

describes this technology in detail.

The Study Domain

The general target domain for the project is the Tactical Command and Control System of the Air

Force. Within the general domain of Air Force Tactical Command and Control, the focus was 'n a

specific type of Tactical Command and Control node called the Air Support Operations Center (ASOC).

The ASOC is an Air Force "lactical Command and Control unit which is "assigned" to and co-located

with an Army Corps Headquarters (sce Figure 2). Its basic role is to supply air support missions in

response to demands originating from the Army Corps' front-line divisions. The ASOC thus has to solve a

problem which, in general terms, can be viewed as a supply management problem. The problem is

nontrivial because the demand for air support may exceed the supply of available aircraft, and both supply

and demand vary independently over time in ways that are only partially predictable.

6

XX
xxxx

BASE B EAD XX

Ficure 2. Project Study Domain: Air Support Operations Center (ASOC).

PLANNING AND OPERATIONS AT THE ASOC

The ASOC's method for solving this supply management problem is a combination of advance

planning and subsequent plan execution with ad-hoc adjustments. Advance planning is done during

the night shift when little or no combat action is occurring.' Plan execution, often referred to as

"operations," occurs during the daylight hours when most tactical combat action occurs.

The plan produced by the night shift crew is basically a schedule which maps predicted supplies of

available sorties into anticipated demands for air support for each of the corps' front-line divisions. This

plan or schedule covers the daylight hours; i.e., the time from first light to last light. Information for the

supply side of the plan comes primarily from the Air Force Air Tasking Order (ATO) and Operations

Order (00). Information for the demand side of the plan comes primarily from the Army Corps' plans

and from intelligence sources. The Army has the prerogative of determining the "priority of fire;' which is

defined in percentage allocations of the total available sorties to each of the front-line divisions. The

ASOC determines the details of timeframes, squadron assignments, and tasking modes.

Plan execution is essentially the responsibility of the day shift crew. The day crew uses the plan as a

baseline which usually has to be modified in view of the most recent information regarding the available

assets and the battlefield situation. The plan is adjusted and readjusted throughout the day in response to

changes in the tactical situation and as preparation for anticipated developments in the near future. The

'This reprieve that may soon disappear with the introduction of technologies that enable ground and
air-to-ground combat during night and low visibility conditions.

7

day crew therefore deals both with the present and with the near future, and with actual and anticipated

supply and demand problems. The key to successful air support service from the ASOC to the corps is to

manage sortie generation and sortie expenditure such that the corps receives optimal support in the

present, throughout the day, and over the foreseeable length of a conflict.

The differing roles of the night and day crews at the ASOC reflect a partition into Planning and

Operations (plan execution) that is common throughout the Air Force Tactical Command and Control

System. The ASOC therefore can be considered a representative subdomain of the offensive side of

tactical command and control.

Within the ASOC domain, this project focused on the decision problems faced by the dayshift; i.e., by

operations personnel. The decision problems involved in planning have already been investigated in detail

through projects like TAOTTS (Barnthouse, 1989) and TEMPLAR (McCune, 1985; Priest, 1986), which

provide training and decision support to the process of developing Air Tasking Orders.

It is important to note that the decision problems faced by planners and operations personnel are

quite dissimilar. One important distinction is the time available for solving decision problems. Planners

usually have much more time than do operations personnel. Planners generally concern themselves only

with a relatively distant future; operations personnel must alternate between the present and the near

future. Planners decide on a global mapping of sorties into demands, not the details of mission

implementation and coordination. Operations personnel must deal with very specific assignments of sorties

to very specific requests, and they have to deal with the details of mission implementation and

coordination.

THE ASOC OPERATIONS TEAM: MEMBERS AND THEIR FUNCTIONS

The ASOC operations team consists of six officers and three noncommissioned officers (NCOs) called

"technicians" The NCOs share in the officers' workload of decision-making tasks and implement the

officers' orders and provide other assistance as needed. Officer positions and duties are as follows:

Director:

Oversees entire ASOC operation. Primarily concerned with overall situation assessment and
advance planning. Issues guidelines for operation to rest of team. May handle support of large or
critical Army operations personally.

Fighter Duty Officer I (and Technician):

Assists the Director in situation assessment and planning. Assigns air resources to air requests.
Coordinates mission support requirements between Army and Air Force in conjunction with
G-3 Air.

8

Fighter Duty Officer HI (and Technician):

Implements air support missions as directed by Fighter Duty Officer I.

Reconnaissance Duty Officer:

Assigns air reconnaissance resources to reconnaissance requests.

G-3 Air:

Army officer. Functions as direct liaison between ASOC and the ARMY Corps' G-3. Prioritizes
requests for air support. Determines which requests can be handled by "organic" (Army)
resources.

Intelligence Officer (and Technician):

Verifies requests, provides information regarding other targets in same area as request, and
provides information regarding air defense threats.

The entire team works in a fairly cramped quarters.

DECISION MAKING DURING ASOC OPERATIONS

Several specific examples of the types of decision problems which occur during ASOC operations are

given below. The following examples illustrate the type of decision-making skills that need to be trained.

Example 1:

The ASOC Fighter Duty Officer I (FDO 1) receives an air request to neutralize eight tanks within the
next hour. The request has been verified by the appropriate officers.

The FDO I must now decide which of the available airplane assets should be tasked to satisf) this
request. If he has no assets to task, he must refuse the request. If weather or threats make mission
success questionable, he has to weigh risks against benefits.

Example 2:

The ASOC receives a Corps request to neutralize a large number of tanks attacking along a highway.

This type of request generally requires tasking of a fairly large number of airplanes, some of which
will be the actual attackers and some of which will fly support missions. This type of request may
include participating Army assests.

This sort of decision problem is usually handled by the ASOC Director, who decides on force
composition, timing. coordination, and other relevant factors.

Example 3:

The ASOC receives weather information that one of the bases where it has airplane assets will be
under zero visibility, zero ceiling conditions within an hour. The weather is estimated to clear within 2
hours.

The ASOC must now decide how to compensate for the shortfall of available sorties. This may have
to involve a complete replanning effort.

In any of the examples above, the decision maker has to consider multiple factors. Some of the most

important factors are pictured in Figure 3.

The common thread that runs through all three examples is the fact that the decision maker has to

generate options for satisfying a current or anticipated demand and then make a choice from among

9

AVAILABLE AVAILABLE
SUPPORT AC ATTACK AC

AVAILABLE
AVAILABLE ORDNANCE
AIRCRAFT

STTU OFAVNNEBL

AND UMIARGET

[igr . Factors Considered by Tactical Command and Control Decision Makers.

them. This "generate and choose" concept of decision making falls within generally accepted definitions

of decision making (see Nickerson & Feehrer, 1975; also Wickens, 1984). The issue of a generic

definition of decision making and the more narrow issue of defining tactical decision making is not further

treated in this report. We confine ourselves here to a definition by example. The taxonomic issues

surrounding decision making are more immediately related to the other part of this project, the search for

a generic instructional strategy, and will be discussed in a report dedicated to this topic.

Unaided Knowledge Acquisition

The specific knowledge and heuristics that enable ASOC personnel to make the kinds of decisions

illustrated above represent the domain knowledge that has to be made explicit in order to provide the

substance of training these skills in others. The methods, results, and problems noted during an initial

knowledge acquisition effort are described below.

10

METHODS

The plan in exploring the ASOC domain was to go "breadth first" and then to narrow the focus and

explore in depth. This strategy was predicated on the assumption that even the relatively narrow

subdomain of ASOC operations was still too broad to permit adequate coverage within the constraints of

the project. To further narrow the scope, it was necessary to first achieve a broad (but fairly shallow)

understanding of the ASOC domain.

The techniques used during initial knowledge elicitation consisted of focused and structured interviews

(Schraagen, 1986). Both types of interviews follow some type of agenda. The difference is that focused

interviews use a "breadth first" strategy, whereas structured interviews use a "depth first" strategy.

One or more knowledge engineers and one or more experts participated in each of the interviews. The

interviews were tape recorded; each of the resulting scripts was analyzed by three knowledge engineers in

succession. Analysis consisted of identifying knowledge elements within the often rather colloquial

discourse. The knowledge elements were transferred to 3- by 5-inch cards which were then sorted and

grouped under topics that emerged during the sorting process. The intent was to identify and use naturally

occurring knowledge categories and not to impose any preconceived classification.

RESULTS

A quantitative description of the initial knowledge engineering effort is presented in Table 1. A total

of four knowledge engineering sessions were held in roughly 4 months. Knowledge engineers and exierts

spent 56 hours together. These sessions produced 26 tapes and 693 pages of transcripts. Analysis of the

transcripts produced 1,599 knowledge element cards. The knowledge elements have an estimated

redundancy of 40% to 50%. The analysis process is labor-intensive. Productivity is estimated at about 1.5

knowledge elements per analyst hour.

The entire initial knowledge engineering effort took more than 500 hours of analyst time and

produced a broad, uneven, and relatively shallow surface layer of knowledge about the ASOC domain.

The analysts involved perceived the effort as inefficient and felt that there were two reasons for this

inefficiency: the team's inexperience, and shortcomings inherent in the interview methods. The team had

to learn how to elicit knowledge. This detracted at least initially from the productivity of the knowledge

engineering sessions. Both interview methods are relatively inefficient, but focused interviews produce

much more "noise" (rambling, anecdotal discourse) than do structured interviews. The structured

interviews were case-based, meaning that detailed and specific tactical situations were presented to the

experts. It was much easier to stay on the target topic with this type of interview, although productivity in

terms of knowledge elements was not higher (see Table 1).

11

Table 1. Unaided Knowledge Acquisition Activities

Contact No. of No. of No. of No. of
Hours Focus and Methods Tapes Pages Cards Analyst Hours

1 2 1 16 Introductory background in ASOC 6 156 604 120
Focused interview

..

2 1 1 16 ASOC communications, job positions,. 7 182 361 150
information flow
Focused interview

..... ,....... |......... •

3 1 3 8 Constructing "special packages' 7 233 384 160
Structured interview

....... ,........ ,................

4 3 2 1 6 Handling of ATRs, effect of weather, 6 122 250 120
troop movements
Structured interview

IjToa 7)17 1 56 126 1693 1,599 550

KEs = KNOWLEDGE ENGINEERS

Case-based interview methods did have one significant drawback: The "case," which consisted of a

script of events in a defined tactical environment, would fall apart if the expert made a decision at some

point that would make the subsequent events in the script improbable or impossible. This type of failure

indicates the need for some minimal capability to adjust the interview script to unexpected expert

reactions. The fallibility of the knowledge engineering script is a problem that plagues all pre-scripted exercises.

As mentioned previously in Section 1, recovery from such deviations in exercises is a very labor-intensive process

which has to take place during a time-out or at night.

The inefficiency of the knowledge engineering process is well known as the "bottleneck problem" of

expert systems technology (Hayes-Roth & Waterman, 1984). In addition to the inherent inefficiency of

current methodologies, a number of other problems were identified which inevitably accompany the

process and which, if left unattended, can jeopardize the success of a knowledge engineering effort. These

problems are described in some detail below.

KNOWLEDGE ENGINEERING PROBLEMS

Five types of problems were identified by the team. None of these are new; they have all been noted

and described before by other researchers who have engaged in knowledge acquisition efforts. The

problems have been referred to by a variety of names; in the present report, they are referred to as

follows:

1. UNCERTAINTY problem

2. EXPERT PARADOX

3. CATCH 22 problem

12

4. ACCESS problem

5. QUID-PRO-QUO problem.

The UNCERTAINTY problem refers to the fact that domain knowledge is often rule-of-thumb,

nondeterministic, and of unknown optimality. Tactical decision problems often have multiple feasible and

acceptable solutions. The solutions may differ in "quality,' but it is quite difficult to find generic metrics to

assess solution quality. Experts may display a low degree of consensus both as to which of several feasible

solutions is best and as to the criteria that should be used to determine the best solution.

It is extremly difficult to identify optimal solutions in the tactical environment. There are many

reasons for this. In addition to individual differences, there are many factors which are unknown,

unpredictable, and fuzzy. A particular solution may optimize effectiveness in a local instance but cripple

overall effectiveness. Knowledge engineering in the tactical environment therefore should seek to identify

a set of plausible and reasonable solutions and define their relation to both local and global factors. The

knowledge engineer is never certain that the solution chosen is best or would "win the war." The solution

is not testable in any real sense.

The EXPERT PARADOX problem consists of the fact that performers who are "merely" competent

can often better verbalize the reasons for their decisions than those performers who are acknowledgei as

true experts. Competent performers also show generally less irritation than do experts when asked

questions b% a knowledge engineer. According to Waterman (1986): "The more competent domain

expert, become, the less able they are to describe the knowledge they use to solve problems!" Waterman

(1986) referred to this phenomenon as "the knowledge engineering paradox" and said that the domain

expert "... makes complex judgments rapidly, without laboriously reexamining and restating each step in

his reasoning process. The pieces of basic knowledge are assumed and are combined so quickly that it is

difficult for him to describe the process." Similarly, Johnson (1983) reported that "... paradoxically, an

increase in expertise seems to result in a decline in ability to express knowledge." Johnson called it "the

paradox of expertise." Along these lines, Fraser (1987) pointed out that "knowledge acquirers may

provoke resentment by rejecting the expert's description of his reasoning and pressing him to justify every

conclusion."

We had access to several experts who differed as to both their levels of expertise and their verbal

skills. It appears that experts with higher levels of expertise operate in a nonverbal, intuitive mode. When

they are queried for the reasoning that led them to a particular decision, they are basically forced to invent

a plausible story. Doing so requires them to revert to an effortful analytical mode that they have long ago

left behind. They appear to feel insecure in this mode. Insecurity is aggravated when the knowledge

13

engineer attempts to probc inconsistencies in successive stories. As a result, the expert frequently gets

irritated or avoids direct answers by digressing into more or less pertinent anecdotes.

In contrast, performers at lower levels of expertise appear to operate in an analytical and more

effortful mode. They seem to have traces of their reasoning readily available and, given good verbal

abilities, produce without hesitation fairly detailed accounts of their decision processes. They exhibit less

of a tendency to become irritated or to digress.

The knowledge engineer must be especially concerned with the CATCH 22 problem. A knowledge

engineer is caught in "Catch 22 situation" in that he cannot elicit deep knowledge unless he asks the right

questions, but he cannot ask the right questions unless he has some deep knowledge. Fraser (1987),

referring to this as a "chicken and egg dilemma," pointed out that, "it is difficult for the knowledge

acquirer to achieve the competence required to elicit, and meaningfully interpret, the knowledge that

experts convey."

In our case, the problem manifested itself in the form of increasing redundancy in expert responses.

After the first tko focused interviews, the subsequent structured interviews produced less new and deeper

knowledge than was expected. Because the structured interviews were based on specific hypothetical

decision "cascs:' it was expected that the experts would produce not only specific decision responses but

also specific, detailed, and deep reasoning explaining their decisions. These hoped-for responses were not

forthcoming. Instead, much of what was learned during the last two interviews was redundant with

knowledge that had already been acquired during the first two interviews.

The ACCESS problem refers to the fact that domain experts, being experts, are usually quite busy and

often remotely located. Schraagen (1986) listed "the expert is inaccessible" as a common complaint of

knowledge engineers. Waterman (1986) said: "Pick a nearby expert, preferably in the same city.

Otherwise, consider relocating the expert for the duration of the project." Such a solution, however, is

often not practical even if feasible.

That was and is true in our case. Our situation was and is aggravated by the geographical distance

between the knowledge engineers who live in Southern California and the experts who live in the heart of

Texas. Commitments on either side, as well as travel restrictions, have limited access to experts in the past

and are expected to impact the project in the future.

The QUID-PRO-QUO problem is related to the ACCESS problem. Knowledge acquisition activities

take experts away from their primary jobs. Any unit who makes experts available therefore "donates"

often substantial amounts of their best people's time and, because knowledge engineering is hard work,

14

these SMEs are not necessarily having a good time at it. As a result, KEs may face decreasing motivation

on the part of the SMEs or the SMEs' unit to support a project whose eventual benefits are difficult to

visualize. In addition, Schraagen (1986) stated that "experts may be afraid of losing their jobs, of being

replaced by computers, or they may be skeptical about the value of using artificial intelligence and

computers." The solution to the problem is a quid-pro-quo which is truly useful to the experts and/or

their unit. "Give the expert something useful on the way to building a large system:' said Hayes-Roth and

Waterman (1984). To be perceived as "useful," a benefit must be immediate or near term, so that

personnel who are currently at the unit will be able to make use of it before they get transferred. Without

some type of near-term and practical quid-pro-quo arrangement, it is unlikely that a productive

relationship can be maintained throughout the project.

Computer-Aided Knowledge Acquisition

CONCEPT

The results of the unaided knowledge acquisition effort pointed to a need to improve the effectiveness

and efficiency of further knowledge acquisition efforts for the project.

The UNCERTAINTY problem arises from inherent characteristics of the domain and can basical;), be

addressed only by abandoning the idea that every decision problem has to have a solution that is in some

sense optimal. The EXPERT PARADOX problem is easily overcome if SMEs are experienced enouih to

be competent, but not so experienced that they have already made the transition to fast, parallel, and

intuitive processing. That leaves the CATCH 22, the ACCESS, and the QUID-PRO-QUO problems as

targets for a different type of knowledge acquisition methodology. To solve these problems, the following

functional requirements had to be satisfied:

1. A convenient case generator mechanism must be available which enables SMEs to employ their
domain knowledge to construct the kind of rich and realistic decision scenarios which the
knowledge engineers could not construct due to their lack of sufficiently deep knowledge.

2. The case generator must be capable of presenting SME-constructed decision scenarios to
experts (other SMEs), permit them to perform the same information search processes they use
in reality prior to making a decision, accept the expert's decision input, and provide a means to
record the expert's reasoning.

3. The case generator must reside on hardware available to the experts and should not require the
presence of an analyst/knowledge engineer for scenario construction or for scenario
presentation.

15

The first requirement addresses the CATCH 22 problem by employing the expert's deep knowledge to

create the knowledge elicitation stimuli. The second requirement generates a system that can function as a

knowledge acquisition device and/or as a training device. By providing for a training device, the

requirement addresses the QUID-PRO-QUO problem. Together with the third requirement, it also

addresses the ACCESS problem, by making a convenient system available at the expert's site that would

enable a knowledge elicitation process without requiring the presence of a knowledge engineer.

The purpose of knowledge elicitation was to acquire the instructional content for the training system

prototypes. The case generator system therefore had to have the capability to capture the decision-making

process in explicit form. To get a complete picture of the expert's cognitive processes during decision

making, it was necessary to capture the expert's decision output and his underlying reasoning, as well as a

trace of his overt, observable activities in arriving at a decision. The system environment therefore had to

permit the expert to engage in a pattern of interaction with the system that would, in all functional

respects, be identical to the real pattern of interaction between the expert and the operational

environment. For example, if the expert during actual operational decision making would have to query

specific sources of information, he should be able to make the same kinds of queries in the desired case

generator system and receive the same kinds of information from the system as he would from actual

information sources. The system environment therefore had to be designed such that it would be at least

functionally isomorphic to the operational environment.

Functional fidelity would, of course, also benefit the intended use of the system as a training device.

The question was whether training applications of the system would require not only functional fidelity but

also some degree of physical fidelity, such as precise replication of paper forms, status board layouts, and

message formats. The answer to this question is basically dependent on the training objectives to be

supported by the system. If the system is to support the acquisition of procedural skills, then physical

fidelity is indeed required. If the system is to support the acquisition of decision-making skills, then

functional fidelity is likely to be sufficient. If the system is to support both types of objectives, then both

functional and physical fidelity should be built into the system. As it appeared desirable to build a system

which would support a variety of training objectives, it was decided to replicate physical aspects of the

operational environment to the extent it was possible to do so without detracting from the primary task of

developing a functional case generator system for knowledge elicitation purposes.

16

IMPLEMENTATION: KEATS

The functional requirements delineated above formed the basis for a system design which was

implemented in Smalltalk V 286 on a Zenith 248 microcomputer. Because this system supports both

knowledge engineering and training activities, it is therefore called the Knowledge Engineering And

Training System (KEATS). The operating modes and design features of the system are described below.

Operating Modes

KEATS has five operating modes which are accessed through the system's main menu (see Figure 4

below).Two of the modes are designed to facilitate knowledge acquisition in the study domain: the

BUILDING mode and the KNOWLEDGE ENGINEERING mode. Besides these two modes, KEATS has

a TRAINING, a REVIEWING, and an ADMINISTRATING mode. The TRAINING mode is identical to

the KNOWLEDGE ENGINEERING mode but does not include the automatic knowledge elicitation

queries. The REVIEWING mode allows on-line review and critique of transcripts collected during

KNOWLEDGE ENGINEERING sessions. The ADMINISTRATING mode is used to keep track of

exercises, transcripts, and system users. The BUILDING, KNOWLEDGE ENGINEERING, and

TRAINING modes are discussed in detail below.

Main Menu,: Select Made

J~o.led e E22ineerin2

He I I .in I.tr.n .i .trt

Figzre 4. KEATS Main Menu.

17

BUILDING Mode. This mode is available in GUIDED and UNGUIDED submodes. The GUIDED

submode is intended for a novice user. It is less elegant and less efficient to use than the UNGUIDED

mode, but it is easier to learn and protects the user from errors. In either BUILDING mode, the user

constructs an ASOC exercise which typically covers the daylight hours of 1 day. Each exercise consists of

two parts: a tactical situation and a script of events (see Figure 5).

Events present decision problems. The tactical situation provides the context within which the

decision problems occur. Tactical situations and scripts are developed with two separate editors. Both

editors work along the same principle: The user selects objects from a collection of standard objects and

customizes them for the exercise. For example, as a part of defining the tactical situation, the user may

select a standard armor division which he customizes by giving it a name, a location, and a current combat

strength; as a part of defining the script, the user may choose an air request event which is instantiated by

a specific origin, a target, and a desired time-over-target.

The definition of the tactical situation must contain a minimum set of mandatory scenario objects in

order for an exercise to run in the TRAINING or KNOWLEDGE ENGINEERING modes. A special

exercise validation routine is available which ensures that the minimum set is present.

ASOC OBJECT COLLECTION

BASES ORDERS AIR REQUESTS
AIRCRAFT WINGS BASE CLOSURES

DIVISIONS CORPS HQ PLAN CHANGES
ETC ... ETC ...

I -I -
TACTICAL EVENT

ENVIRONMENT EDITOR
EDITOR

TACTICAL
SITUATION SCRIPT - EXERCISE

Fimure 5. KEAIS Building Mode.

18

The result of exercise building is thus a chain of events which occurs in a specified tactical

environment. Any tactical situation can be combined with any number of different scripts. Any defined

tactical situation and script can be edited. Once a small number of different exercises exists, additirnal

exercises can be built very efficiently by modifying the existing ones.

KNOWLEDGE ENGINEERING Mode. In this mode, the user "runs" a previously built exercise.

Exercises unfold in two phases: an initial orientation phase and a subsequent operations phase. The

general flow of an exercise is shown in Figure 6.

During the Orientation Phase of an exercise, the user first familiarizes himself with the overall tactical

situation. This initial step simulates the beginning of the day shift in the real world. This familiarization

process is enabled by making available the same information resources that are present in the real world;

i.e., by supplying briefings and orders to review, by enabling question-and-answer interactions with

members of the ASOC team or with external agencies, and by reviewing status boards and maps (maps are

currently supplied on paper).

The result of the Orientation Phase is an initial Situation Assessment which, in turn, leads to an initial

Plan Of Action. The Plan Of Action usually entails preparing some of the air resources for immeciate

tasking by putting them on various levels of alert.

INFORMATION RESOURCES

MAP BRIEFINGS ORDERS STATUS SOC TEAM EXTERNAL REFERENCE
(EXTERNAL) BOARDS AGENCIES FACTS

SITUATION
ASSESSMENT FIRST/

F E XiT COGITATION DECISION

ACTION MESAGE

RESO U RCE F E A
IPREPARATIONF EDAKl

ORIENTATION OPERATION

Ficure 6. Exercise Flow in KEATS.

19

The user can take as much time as he wants for this phase. Before he can begin the second phase of

the exercise, the KNOWLEDGE ENGINEERING mechanism elicits his initial situation assessment, his

plan of action, and the specific conditions that led him to put certain airplanes on certain alert states. The

user responds by typing the requested information into forms with a word-processor-like facility.

During the Operations Phase of the exercise, the user reacts to events as he triggers them. Events

show up as messages which arrive at a Message Desk. He reacts to events as he would in the real world by

accessing various information resources to confirm the event, to gather additional information about it,

and to determine solution options. After this period of "cogitation" he enters a decision response to the

event by telling some other agency to do something; i.e., by issuing a specific order.

KEATS evaluates the user's response by checking for violation of physical constraints. For example,

the user may respond to a request for air support by taskin, ,o,ne win- to fly a mission with four airplanes

of a specific type that must be at their tart , during a certain timeframe. KEATS checks whether these

airplanes are indeed available at th ,t wing and whether they can make the desired time-over-target

(TOT). The results of constraint checking are returned tu tme user as feedback messages. If the tasked

mission does not violate any physical constraints, the user receives a message which indicates that the wing

accepts the tasking. Otherwise, the wing sends a refusal message to the user.

After the user has reacted to an event, he is queried by the KNOWLEDGE ENGINEERING

mechanism -- first, with respect to the specific conditions that led him to the decision he made, and

second, with respect to any changes in the situation assessment or plan of action that might have been

triggered by the event. Again, he types in his responses. All user-system interactions and all user inputs

are saved on a transcript which is, in fact, a detailed decision-making protocol.

The knowledge engineering queries in each exercise phase are designed to elicit knowledge from two

hierarchically related levels of decision making shown in Table 2. On the macro level, the ASOC battle

manager deals with the "big picture" by assessing (and constantly reassessing) the overall tactical situation

for the ASOC and by deciding on (and changing) a plan of action which is consistent with this assessment.

On the micro level, the battle manager decides on what to do about a specific event. Decisions on this

level are guided and constrained by decisions made on the planning or macro level.

This knowledge acquisition strategy is essentially based on the two modes of decision making (i.e.,

planning and operations) that are found throughout the Tactical Command and Control System. The

battle manager must form and continually update a global perception of the tactical situation and must

20

Table 2. Knowledge Elicitation at Queries in KEATS

KNOWLEDGE QUERIES DURING
LEVEL ORIENTATION PHASE OPERATION PHASE

MACRO WRITE INITIAL WRITE CHANCES TO
SITUATION SIT. ASSESSMENT AFTER EACHLEVEL ASSESSMENT DECISION(-BIGOUTPUT

PICTURE") WRITE INITIAL WRITE CHANGES TO
PLAN OF ACTION PLAN OF ACTION

MICRO RESOURCE PREPARATION: IF NOT ROUTINE:
(PTIING AIRCRAFT ON

LEVEL ALERT) STATE CONDITIONS
(SPECIFIC STATE CONDITIONS SHOW BOUNDARIES AFTER EACH

DECISION
SHOW BOUNDARIES IF ROUTINE: IOUTPUT

GIVE OPTION

COMPARE

formulate a plan for dealing with that ' "tion Fe m,.st solve any particular decision problem by

considering the local, short-term parameters of the problem within the context of the "big picture"; :.e.,

his overall situation assessment and plan.

It follows then that knowledge acquisition must aim to capture both of these aspects of expert

knowledge. It must capture the expert's global or macro perception of the tactical situation and the

general heuristics for dealing with the overall situation. It must also capture the expert's local or micro

perception of the specific decision problem (presented by a given event) and the heuristics that apply to

solving decision problems at that level. Finally, knowledge acquisition must capture the interaction

between context and specific problem; i.e., the reasoning that links the macro and micro levels.

The knowledge acquisition procedures currently implemented in KEATS are designed to capture

these knowledge elements. KEATS queries the subject first on his overall perception of the situation, by

asking him for his ASSESSMENT of the situation; it elicits general heuristics by asking for his PLAN OF

ACTION. As subsequent events occur, the subject is asked to provide any changes or updates he might

want to make to his ASSESSMENT or PLAN OF ACTION. To elicit knowledge on the micro level, the

subject is queried after each decision for the specific CONDITIONS that have led to the decision. It is

expected that this query will yield responses on both levels, micro and macro, and that it will provide

insight as to how these two levels interact. This interaction is further explored with the final type of query,

where the subject is asked to indicate what conditions would have to change (and how much) to make his

decision invalid (i.e., to trigger a different decision).

21

Events may not always require a decision but rather, a "routine" or standard response. Those are

typically the events that fit perfectly with the current situation assessment and plan of action. They are, in

other words, expected and thus merely trigger a planned response without requiring a choice between

response options. If this occurs during a knowledge engineering session, the subject can so indicate. As a

result, the subject does not have to repeat a routine set of conditions to justify and explain his response.

Instead, the subject is asked to provide an alternative response to the routine one and compare the two.

This type of query is designed to elicit additional micro-level reasoning. It also prevents the subject from

answering the knowledge engineering queries in routine cases by merely referring to answers to some

earlier query.

TRAINING Mode. In the training mode as in the knowledge engineering mode, the user (or trainee

in this case) goes first through the Orientation Phase which simulates the shift takeover in the morning.

Once he has familiarized himself with the tactical situation, he can enter the Operations Phase.

The difference between the two modes is the absence of knowledge elicitation queries in the

TRAINING mode. This has two consequences. First, user-system interaction is smoother and more

natural without the constant intrusions of the "knowledge inquisitor." Secondly, the Orientation 0 hase is

changed. In the TRAINING mode, the user does not have to develop an explicit situation assessment or

plan of action during the Orientation Phase; nor does he have to prepare his air resources before he

transitions into the Operations Phase. He can, if he so chooses, skip the entire Orientation Phase and

"start the war" right away. Once in the Operations Phase, though, he will suffer the consequences by not

being able to task airplanes which can get to their targets on time -- an example of the functional fidelity

built into KEATS.

In general, training fidelity in KEATS is a function of what has been built into the system on the one

hand and a function of what has been built into a given exercise on the other hand. The KEATS

environment by itself provides a high degree of functional and physical fidelity. Status boards, tasking

forms, briefings, orders, and even the interior of the ASOC command post are faithfully replicated. The

trainee can communicate via ASK and TELL functions with all agencies/individuals he normally

communicates with in reality, including his teammates in the command post. The communications

themselves are restricted to the possibilities offered by a series of menus. These can be arbitrarily

expanded until they include all standard or common inquisitory and directive communications.

Whether the particular scenario presented by KEATS appears credible and/or realistic to the user

depends on how well the exercise is built; i.e., the only limitations in this respect are the skill and

expertise of the exercise builder. A scenario, for example, can duplicate one that is planned for a major

22

FTX or CPX, or it can represent actual scenarios expected during real conflicts. This offers the possibility

for using KEATS not only for training but also for mission rehearsal purposes -- an example of the

versatility offered by the TRAINING mode.

The versatility of the TRAINING mode stems from the fact that KEATS is essentially a shell, rather

than a fixed program. The BUILDING mode, backed by the ASOC object collection, allows the

construction of training exercises which are arbitrarily complex and which can be slanted toward particular

problem types that occur in the ASOC world, thus permitting training in support of a wide variety of

position-specific and problem-specific training objectives. In addition, training exercises can be

constructed for specific theaters. Exercises can also portray specific actual operational war plans or plans

for a scheduled major CPX or FTX, thus enabling employment of KEATS as a mission rehearsal system.

The TRAINING mode can be employed by single users, by a trainee with an instructor or coach, or

by small groups. At the present time, KEATS can only be presented at one terminal at a time; i.e., it

cannot accommodate multiple interacting terminals in a network.

The feedback capabilities of the TRAINING mode are limited. As mentioned in the previous section,

KEATS does check for violations of physical constraints. The results are fed back to the trainee in the

form of messages from agencies which were affected by the trainee's decision. Checks for physical

constraint violation evaluate the technical feasibility of a decision but they do not evaluate its "tactical

wisdom." The latter requires the kind of deep domain knowledge that KEATS is designed to elicit.

KEATS, in its present form, also provides only minimal feedback in terms of changes of the tactical

situation as a result of trainee decisions. The script is largely fixed. However, some decisions do lead to

modifications. For example, choosing to supply air support to a division in a particular manner causes

requests on the script that would normally be sent to the ASOC to be intercepted by the division.

User Interface

An appropriate user interface was considered absolutely crucial for system success. The interface had

to be tailored to the ASOC users and to the conditions under which they would use the system. The

prospective ASOC user was assumed to be an officer (Captain through Lieutenant Colonel) who is

comfortable with using computers but who is not a programmer. His motivation to do the extra work in

supporting an outside agency was assumed to be low to nonexistent (worst case!). He would have little

time to spare and therefore could not be expected to spend more than 1 or 2 hours on "trying to figure

23

out the system" (i.e., on learning how to operate KEATS). He would have to use the system on his own,

without assistance from an analyst (knowledge engineer), a computer expert, or another user already familiar with

the system.

This "usage scenario" gave rise to a number of broad design goals for the interface. The primary goal

was to make the user interface as natural and intuitively obvious as possible. This is not necessarily the

same as building functional and physical fidelity into the system. Functional fidelity enables the user to do

all the things he must do in reality. Physical fidelity means that stimuli and tools occurring in the real world

are faithfully replicated in the system. A natural and intuitively obvious interface (as we understood that

notion) may include these aspects, but its primary characteristic is that it never puts the user into a

quandary with respect to where he is in the system, where he can go from where he is, and what he can or

cannot do when he gets there. Our goal was, in other words, to create an interface that would present little

or no "navigational" or "action selection" difficulties to the user.

Another design goal was to have an interface that was as direct as possible; i.e., an interface that

would not require system-peculiar intermediate steps before the user could perform a desired action such

as look at a status board, task a mission, or ask a question.

Thirdly, it was highly desirable to make the interface as nearly "foolproof' as possible. This idea

includes making the system almost impossible to crash, building in safeguards which prevent the user from

making mistakes, and allowing for easy recovery if the user does get stuck in spite of safeguards.

Finally, the interface should, as much as possible, eliminate trivial tasks (such as filling in repetitive

data on a status board), and it should include a means for the user to feed back suggestions for system

improvement to the system builders.

These design goals were achieved with specific features in each of the major interface components

(i.e., in System Displays, Menus, User Inputs, and Help facilities). Each of these components is discussed

below.

System Displays. All screen displays in KEATS are designed to present information in a clear and

simple format. Information which is not relevant to the current user activity is not visible on the display

but can be readily accessed when it does become relevant (see discussion of menus below).

A zoom feature (toggled by a function key) allows the user to get a full-screen view of object

descriptions and of feedback displays (see Figure 7).

24

FiT:ti? :; Request il is refused:

Mission 3AC2S1 refused because: Prescott

Squadron does not have operational bases.
Mission 3AC281 refused because: requested number

of aircraft not available for the requested tot.
Mission 3AC183 refused because: Mission 3AC13

is not on our active mission list.

Fieure 7. Zoomed Full-Screen Display in KEATS.

All screens show orientation information on the top line; the current operating mode is indicated by a

label on the left side and by the background color of the line (green for TRAINING, orangt, for

BUILDING, etc.) which also shows up on the main menu when the operating mode is selected. Tho top

line also shows to the right the name of the current exercise (being built or run). Exercise time is displayed

as a Date-Time-Group (DTG) at the right-hand side of the top line (during TRAINING and

KNOWLEDGE ENGINEERING). Further orientation information may be displayed in the second line of

the display. The third line is occasionally used to convey instructions to the user.

The knowledge engineering and training modes are designed around two central screens: the message

desk and the ASOC screen, which are easily recognizable by their green background as opposed to the

white background of all other screens. The message desk provides a running log of incoming messages and

of user decisions made in response to these messages. The ASOC screen serves as a communication hub.

From this screen, the user can communicate with other people inside the ASOC command post and with

all necessary agencies outside.

Menus. Three types of menus are used for navigation. Full-screen windows are used for the main

menu (see Figure 4) and the top menu of the BUILDING mode. The other two types of menus are

pop-up windows overlaid on screen displays. Either they appear automatically or they are called up by the

25

user (b\ chcking right button on mouse). The automatic pop-up menus force the user to make selections

of submodes and types of exercises. The pop-up menus called by the user are called Options. They

displa% all facilities which the user can reach from his current location.

All menus either appear wkhen called or appear automatically when intermediate selections must be

made to oet to a destination. At all other times, the menus are out of sight, which avoids cluttering the

screen displaxs. In all menus, selection is made by driving the cursor over the desired selection and

clicking the left mouse button.

User Inputs. User inputs are made either by convenient mouse-click selection from a pop-up menu

list or by way of the keyboard. The use of list selection input has been maximized to reduce tedium and

labor for the user as much as possible. Keyboard inputs of text and numbers are, however, unavoidable in

the BUILDING and KNOWLEDGE ENGINEERING modes. 2

A particularly interesting application of the list selection input mode is used for the simulation of

communications with ASOC team members or outside agencies (see Figure 8). The user makes a series of

selections %hich first vet him the "other party," then the mode of communication which is either ASK or

TELL, and then a series of topics and subtopics which allow him to construct a question or an order. The

question or the order is displayed in the lower part of the screen as it is formulated. The system's reply to

either the question or order appears then directly underneath.

Help. Help is always accessible from the option menus. The help text explains the selections available

on the menu. Indirect help is provided by means of blocking some user inputs to prevent user error. When

this occurs, a pop-up message appears which informs the user as to what to do next. A pop-up hint

appears during exercise loading informing the user, "This will take a while!" This message helps to prevent user

frustration and undesirable keyboard inputs during the loading process.

Overall, the user interface is completely consistent, pleasant in appearance, and, as far as limited

experience shows, very easy to learn. The users who have been observed thus far were fluent in system

operation after about 1 hour. Once past this initial orientation period, the users had few, if any, questions

regarding system operation. The system itself had receded into the background and the decision problems

posed by it became the focus of user attention.

2Audio recording would be available alternative for KNOWLEDGE ENGINEERING, especially if the
soundtrack could be keyed to the transcript. The alternative was rejected for this first implementation
because of time and cost constraints.

26

Hello, ASOC G3Air here
ASOC

Friend Iq Corps

Armg Guidance

friendly GOB
Friend ly Tactical Situation

Ask Other

Uhat is the per cent strength of/For Fourth lech Inf?

The per cent strength of'for Fourth lach lnF Is 50 X.,

Hello, UOC Luke here
Establish Smooth Flow

Recommend Flush
Recommend Relocate

lell Remove From Alert
Tell Other

Tell UOC Luke: Tell Put On Alert
Tell UOC : TelIPutOnAlert, alrUnit = , #a/c-

4. ' 1S. mission= 3AC281. remarks= ??

210718: : UOC putting 41 from Squadronf on 1S-minute alert
(Mission 3AC21).

L &. Ask and Tell Communications in KEATS.

Programming Environment

The functionality of KEATS as specified in the design raised several implementation issues. These

included:

1. What programming approach or paradigm should be used?

2. What hardware platform should be used for development and deployment?

3. What programming language and software tools should be used?

The most important decision was to use an object-oriented approach in implementing KEATS.

KEATS was to be an exploratory, fluid system; thus, a rapid prototyping software environment was

crucial. Using an object-oriented approach seemed particularly suitable for this requirement. The object-

oriented paradigm is based on the concept of classes and instances of classes where the behavior of an

instance is specified in the class and each instance maintains its own set of local attributes. Classes are

organized in a tree structure, with each class "inheriting" the behavior and variables of the class above. By

adding new subclasses as leaves in the tree, or modifying the behavior of classes higher in the tree, one is

able to successively refine and fine-tune an application in an especially powerful and "natural" way. If, as is usually

the case, an objcct-oricnted language comes with a large set of prebuilt classes, then the development effort is

noticeably reduced.

27

The choice of hardware platform was driven primarily by cost, portability, and the ability to upgrade

the system as more resources were required. Cost constraints required that the hardware be an IBM AT or

Macintosh II class machine. Portability favored the AT (or compatible) and Mac II because of their large

user base; however, the AT was favored because of its availability at the ASOC and most Air Force

squadrons. Both could be upgraded in memory and mass storage; however, it was believed that the AT

would provide a clearer migration path to increasingly powerful 80386 machines for greater processing

speed. Thus the AT was selected; this, in turn, influenced the choice of software tools for the

implementation.

A key issue in language selection was how naturally the problem domain would be represented in the

language. As is true for Tactical Command and Control Centers in general, the ASOC world is composed

of many elements interacting together and communicating via messages. There would clearly be

advantages to being able to correlate these with corresponding data types and control constructs in the

implementation language.

It was also desired that the software development environment provide a toolkit for fast construction

of meris, windows, and graphics images to experiment with a variety of user interfaces.

The candidate languages were initially C, LISP, and Smalltalk. Two variants of C (Objective C and

C++) provide good support for object-oriented programming but few tools for interface development.

Furthermore, the object-oriented support is more in the nature of an added layer of functionality rather

than an intrinsic part of the language. More telling is that they are compiled languages and not particularly

suited for rapid prototyping in contrast to LISP and Smalltalk. LISP (by which Common LISP is assumed)

is the most flexible of the candidates, and packages such as FLAVORS can be purchased to provide the

necessary functions for object-oriented programming. However, execution speed was a significant

concern, user interfaces and graphics tools were relatively spartan, and a full Common Lisp was not

commercially available at the start of the KEATS implementation effort. Expense was another concern, as

it would have been necessary to purchase licenses for "partial" Common LISPs.

Smalltalk is the prototypical object-oriented language/environment and is a mature and stable product

with support from multiple vendors. The language has an elegant syntactical and semantic consistency and

provides the most natural mean, of expressing the object-oriented paradigm. This is not surprising in that

object-oriented programming and Smalltalk were developed hand in hand at Xerox PARC.

28

Although a full Smalltalk-80 was not available on the AT, a relatively complete subset was obtainable

from Digitalk Inc. Their product, Smalltalk/V and later Smalltalk/V286, had been evaluated on a

previous project and found to be well built and well supported.

The only drawback of any consequence to choosing Smalltalk/V286 is that this particular

implementation of the language departs in some areas from a "true" Smalltalk-80 and thus is not

immediately portable to other systems supporting Smalltalk-80. The differences, however, could be easily

fixed (mostly changing names of a few classes, adding some infrequently used methods, changing ':=' to

'<-' in the syntax).

In conclusion, an object-oriented approach was chosen because of its conceptual similarity to the

problem domain, which was naturally modeled as the creation and manipulation of physical objects.

Smalltalk/V286, in particular, was chosen because of its rich set of predefined data types, extensive

graphical interface, availability on ATs, and low cost.

System Software Architecture

The structured interviews employed during the unaided initial knowledge engineering effort relicd on

paper-based cases to acquire expert knowledge. A case began with a description of the battlefield

environment. Experts received a list of available air assets and a written briefing on friendly and enemy

force strength, position, and intentions. When the experts were ready, a knowledge engineer announced

events from an agenda of events (Figure 9). These pre-scripted time-ordered events were reflected in

messages reporting about division movements, base closures, aircraft losses, requests for air support. and

other relevant incidents. Knowledge engineers recorded the experts' reactions to the event and also

attempted to accurately account for asset and battlefield state changes.

KEATS is an automated and extended metaphor for the paper-based process. KEATS implements

the concepts of a case, an environment, an agenda, and a knowledge engineer using an object-oriented,

agenda-based architecture:

1. A Case Librarian maintains cases

2. Environment objects store information and account for state changes

3. Event objects trigger Environment state changes

4. An Agenda Manager object sequences through Events stored on an Agenda

5. A window and menu-based user interface display information; the interface also prompts and
records expert input.

29

AGENDA

0700 Airfield A remains inoperational with 0-0 conditions.

0705 Station I reports two aircraft collide while being moved. Both suffer wing damage. Estimate 10 hours to
repair.

0710 First Air Cay request

0715 First Air Cay request
Second Armor request

0800 Intel reports that enemy force I has occupied Mtn A
Intel reports sighting of enemy force 4 SE of Station 2

0805 Station 3 reports lose of aircraft

0900 Base X closed down by unknown agents

0905 Station 1 reports loss of aircraft

0925 Station I reports loss of aircraft

1000 Base X operational again

1005 Intel reports that enemy force 3 has captured Airport B

1005 Station 4 reports loss o " aircraft

1010 Intel reports that e, my force 3 has captured the town near Station 1

1012 Fourth Mc,, ., request

1015 Intel rc)orts that the first friendly force has advanced to the intersection of X and Y

1020 Corps changes fire priorities to:
First friendly force 30%
Second friendly force 10%
Fourth friendly force 60%

1 l0'r Station I closed down by thundershowers

1115 Airfield A reports loss of I aircraft

Figure 9. Sample Paper-Based Case: Fictitious Agenda from a Fictitious Scenario.

Each of these architectural components is implemented as a Smalltalk class within the KEATS

environment. The classes are structured to take advantage of Smalltalk's inheritance features. Figure 10

shows the relationship among the major architectural components, how they interact via messages with

each other and with major objects built into the Smalltalk/V286 environment.

Case Librarian. The Case Librarian object saves and loads cases to disk files. The user builds a case

using the KEATS' BUILDING mode and runs the case using the KEATS' TRAINING or KNOWLEDGE

ENGINEERING mode. A runnable case consists of user-defined Environment and Event objects.

30

I
I

CREATEDETE MOONITORDSA MSSG

~SCREEN
DISPLAY

CASE STATE
LIBRARIAN SAIN aEE ENIMOUSE

210g00 EVENT 4'oi

LOAD E 21091o EVENT p NEXT WINDOW i th AS w
AED IdEVENT' BROWSER.. ,PTHR

210930 EVENT MNGRPANES,AN

MENUS S1EUE
CREAT, DELTE, MDIFYAGENDA OF N
CR AT ,DE E EMO LY b EVENTS USER IN E F C

BUILDING, LOADING A CASE RUNNING A CASE

Figure 10. KEATS Architectural Components for TRAINING and KNOWLEDGE ENGINEERING.

Environment. Environment objects represent physical and conceptual objects in the ASOC's world.

The ASOC tasks aircraft for Army air support. Aircraft and Army divisions are Environment objects. The

ASOC is cognizant of the tactical situation. Enemy Tactical Situation, Friendly Tactical Situation, Air

Order of Battle, and Ground Order of Battle are Environment objects. The entire set of classes of

Environment objects is listed in the Appendix.

During case building, the user defines individual objects that belong to these classes. Each of these

individual objects, called "instances" represents a unique set of values. The user defines both the

quantity of instances and the values which characterize each instance. For example, an aircraft has an

aircraft type, an assigned base, and a current status. The Case Librarian saves the Environment objects

defined for a given case, along with the events for that case.

Events. As a case is run, the characteristics of individual objects are changed by events. Lose Fighter

Aircraft is such an event. It triggers aircraft losses. During the BUILDING mode, the user may decide to

reduce aircraft assets due to a ground missile attack at 9:00 a.m. He does so by creating a time-tagged

event for 0900, specifying the squadron losing the aircraft, how many aircraft to lose, the reason, and the

location (air or ground).

31

A complete list of all classes of events is found in the Appendix. The user may only author instances

of Scenario Events. Other classes of events support data collection, system updates, and user changes to

the Environment while running a case.

Scenario Event instances are saved as a list and sorted by time. The list, called an Agenda, is stored

with the Environment instances for the case. When triggered by the Agenda Manager, Scenario Event

instances send messages to Environment instances.

Agenda Manager and Agenda. The Agenda Manager runs a case for Training or Knowledge

Engineering. It retrieves event instances from the Agenda and sends a message, "do it," to trigger the

event. Depending on the class of event and the time tag, the Agenda Manager may sequence through

several events upon activation. The KEATS user interface activates the Agenda Manager.

KEATS: KEATS Interface, KEATS User, KEATS Utilities. In keeping with the standard Smalltalk

interface, the KEATS user interface is window- and menu-oriented. KEATS appears to the user as a

series of full-screen windows that are sequenced from one to another either via pop-up menu selections

or window option selections. From the implementation point of view, each window corresponds to a

KEATS Window Browser with a predefined appearance and functionality.

The KEATS Interface Classes are found in the Appendix also. Each KEATS window that a user sees

corresponds to an instance of a subclass listed under KEATS Window Browser. Application-tailored

pop-up menus, data entry pop-ups, user input parameters descriptions, and user privilege descriptions

complete the set of KEATS classes implemented in the present effort to develop the user interface. For

example, a Message Desk Browser instance represents the Message Desk window. In the class description

of the Message Desk Browser, the appearance of the window is described as a set of three window panes

that compose the window: a header pane with mode/time/exercise information, a title pane, and a

message display pane.

Each window pane has a corresponding user input manager called a "dispatcher:' Whenever the user

enters keystrokes or mouse button actions, the Smalltalk scheduler notifies the responsible dispatcher to

process the input. So, when the user clicks right within the bottom-most pane, the dispatcher for that

pane performs the predefined right-button action, which is to show the pop-up menu. Once the user

selects an option from the menu, the selection is processed by the browser.

Selection of the ASOC screen option causes the Message Desk Browser instance to schedule display

of the ASOC Screen Browser instance, relinquishing control to the Smalltalk scheduler to show the ASOC

window. All sequencing from window to window in KEATS is done similarly.

32

Understanding the Whole. Figure 10 can be used to trace through the major processing steps for a

particular event (Lose Aircraft). Beginning %ith the Message Desk, the user selects the Next Event option

from the pop-up menu. The pop-up menu object sends a "next event" message to the Message Desk.

The Message Desk responds to the "next event" message by sending a "next event" message to the

Agenda Manager. The Agenda Manager retrieves the next event from the Agenda, the 9:00 a.m. Lose

Aircraft event. The Agenda Manager forwards the clock to 0900 and sends a "do it" message to the Lose

Aircraft event.

The event sends a message to Station 1 to lose a ground-based aircraft due to a base attack. The

Station 1 squadron, an Environment object, sets the status of one of its aircraft to unavailable and sends a

message to its operations center to report the loss.

The processing cycle for the event is completed when the operations center reports the loss via a

message back to the Message Desk. The Message Desk updates the screen to display the aircraft loss

message.

As the processing cycle illustrates, the object-oriented approach helps achieve congruity between the

architectural components and the elements of case-based knowledge acquisition. This congruence anc the

inherent modularity of objects expedited rapid, incremental, iterative development of the KEATS

metaphor. The Environment objects' close correspondence to the ASOC's world aided provision of

rational responses regarding air asset status. Furthermore, the Agenda Manager, Agenda, and Events

proved invaluable as simulation building blocks, triggering realistic behavior in addition to scripted events.

Technical Data

Pertinent data describing hardware requirements for KEATS, as well as the sizes of the various

software components, are listed in Table 3. The system is currently installed on a Zenith 248

microcomputer at the 712th ASOC Squadron. Installation required expansion of the existing Random

Access Memory (RAM) by 2 megabytes (MB).

Table 3. KEATS Hardware and Software Requirements

SOFTWARE KEATS APPLICATION 0.8 MB IMAGE

TYPICAL EXERCISE 0.2 MB

SMALLTALK/V286

SMALLTALK/V GOODIES 0.5MB

HARDWARE IBM PC/AT COMPATIBLE, 286 OR 386, 3 MB RAM

HARD DISK, 5 1/4" FLOPPY
EGA, MOUSE SYSTEM COMPATIBLE MOUSE
IBM GRAPHICS PRINTER OR HP LASTER JET PLUS

DOS 3.2 OR 3.3

33

Summary

KEATS is basically a shell designed to facilitate knowledge engineering in the ASOC domain. It

contains standard versions of all the objects in the ASOC world. Editing facilities allow a user to customize

these standard objects and to construct realistic and specific decision-making scenarios. The scenarios

can be presented to experts for knowledge engineering purposes, to students for training purposes, or to

operational teams for mission rehearsal purposes. In the knowledge engineering mode, two levels of

knowledge are elicited: knowledge used in overall situation assessment and planning (macro level) and

knowledge used in reacting to particular tactical events (micro level). The expert responds to knowledge

elicitation questions by keyboard inputs. The system collects a complete decision-making protocol.

KEATS provides limited feedback regarding decision feasibility and has a limited capability to adjust a set

of prescripted events to user decisions. KEATS in its present form is a research prototype of a new

multi-purpose technology which is based on inexpensive software and hardware. It can be expanded into

neighboring domains by extending the resident object pool.

III. RESULTS

At this writing, KEATS has been used only once and only in its role as a knowledge acquisition

support tool. This first employment had the dual purpose of knowledge acquisition for the follow-on

system and formative evaluation for KEATS. The methods used during this first trial and the results

obtained are reported here.

Method

Two ASOC experts used the system for 2 consecutive days at the contractor's facility. Each expert was

independently (in separate rooms) subjected to two different exercises that had been developed by the

contractor, rather than by the experts themselves. On Day 1, Expert A ran Exercise 1; Expert B ran

Exercise 2. On Day 2, the experts switched exercises so that both experts did both exercises on different

days. Each expert was assisted during both days by a contractor analyst/knowledge engineer. The analysts

were there to observe the experts and to provide "over-the-shoulder" assistance in system use if required.

The analysts also taped any discussions with the expert and/or the expert's monologues (they were

encouraged to "think out loud"). The tapes were made to determine whether significant information was

getting lost during the relatively laborious keyboard input of reasoning.

34

Knowledge Product

Overall the two experts produced 29 pages of transcript. Expert A produced approximately seven

more transcript pages than did Expert B. Expert A also processed five more events than Expert B

processed during the same time (Table 4). Expert A had a prior exposure of several days to an earlier

version of KEATS.

Table 4. Productivity During Knowledge Elicitation

Output Expert A Expert B

Events processed 10 + 7 = 17 a 11 + 11 = 22

Number of pages of transcripts 6 + 5 = 11 9 + 9 = 18

aExercise 1 + Exercise 2 + Total

MACRO-LEVEL KNOWLEDGE

During the Orientation Phase of the exercises, the two experts produced a total of four Initial

Situation Assessments (ISAs) and four Plans of Action (POAs). ISA and POA length was about six lines

on the average; i.e., the length of an average paragraph of text. Length differences between ISAs and

POAs or between experts were negligible.

Analysis of the assessments and plans revealed common content elements across exercises and

experts. Assessments consisted of three parts: statements defining the probable demand for air support,

statements evaluating the anticipated supply of air resources, and identification of replanning triggers or

factors that should be watched because they might trigger a revision of whatever plans were made (see

Table 5).

Plans consisted basically of a partial mapping of air resources by squadrons to front-line divisions. The

two POAs (by each of the two experts) for one of the exercises are shown in graphic form in Figure 11.

They represent clearly very different ways of dealing with the same situation, but they are constructed of

35

Table 5. Content Elements in Situation Assessments

Expert A Expert B
Element Exercise Exercise

1 2 1 2

Demand asssessment
p b

ID of need X X X X
When X X X

Division X X X X

Priority X c X X X

Supply assessment

Type of a/c X C X
Xc

Ordnance X X X

Planned allocation to meet demand X X X

Time to target area X X

Replanning triggers (e.g., Wx at 1100, end of
attacking period)

f
What X X X
When X X X

a role; i.e., offensive/defensive attacking/holding is an important factor.

b did not note attack time and looked at strength and fire priority.
c stated as action conditions.
d ,mix"
e ID of distinguishing features.

on notepad.

the same elements. The ISAs which were generated prior to the plans were also different but could not

logically account for all plan differences. It was inferred that other macro knowledge not tapped by the

current elici'ation strategy in KEATS accounts for unexplained plan differences.

During the Operations Phase of Exercise 1, only one change to ISA and POA was noted (by Expert

A). In Exercise 2, both experts changed ISA and POA twice but at different times in the exercise (i.e., in

response to different stimuli). The changes always involved a revision of the initial demand assessments

and resulted in a revised plan for allocation of air resources.

Assessment and planning thinking on the macro level was also found in some of the responses to

queries on the micro level. One of the experts used the Notepad facility extensively and noted some of his

planning and assessment thoughts there.

36

EXPERT A EXPERT B

SQUADRON DIVISION SQUADRON DIVISION

xx xx

(II Mil 2 (3i\ 112

WHOLE DAY

,2 10
@ 1N1

0
0MN

I SMOOTH FLOW 1 SMOOTH FLOW

5 ALERTS (WITH ALTERNATES) I ALERT (NO ALTERNATE)

NOTES:

SMOOTH FLOW ISOTFL

ALERT

ALTERNATE

Figure 11. Plan of Action Differences in Identical Situations.

37

Tape transcripts and KEATS protocols contained the same relevant information. The tape transcripts

also contained discourse unrelated to assessment and planning.

MICRO-LEVEL KNOWLEDGE

Micro-level knowledge was elicited for expert decisions in response to air requests. Experts were

asked to list and rank-order the conditions that prompted their decisions. Altogether the experts made 28

tasking decisions and justified them by listing 135 conditions.

No differences between tape transcripts and KEATS protocols were noted, except for the presence of

discourse unrelated to the decision tasks in the tape transcripts.

There were noticeable differences between the two experts. Expert A responded with an average of

about four conditions, verbalized (thought out loud) his reasoning before entering the decision, and then

entered his reasoning. Expert B responded with an average of about six conditions, made and entered his

decision with a minimal verbalization, and then rationalized his decision post-facto.

Subsequent analysis of the tasking decisions and conditions produced 64 rules on nine different topics

related to decision making in response to air requests (see Table 6).

'able 6. Number of Rules Obtained by Topic

Order of tasking 4

Requests before tasking 6

Putting aircraft on alert 2

Tasking beyond NLT 2

Selection of assets 26

Amount of support 11

Request refusals 3

Smooth flow 5

Diverts

TOTAL 64

Additional Knowledge Products

The first trial of KEATS as a knowledge engineering support tool was also a formative evaluation of

the KEATS system. Two types of information were collected:

1. Information relating to the fidelity of built-in functions and facilities within the KEATS
environment, and

38

2. Information relating to the fidelity of exercises that were presented to the experts (and
constructed by means of KEATS' building function).

Both types of information can be viewed as knowledge engineering results in their own right. The trial

produced a total of 23 items indicating changes to be made to KEATS and 15 items indicating changes to

be made in the existing and in future exercises.

Cost

The cost of acquiring the knowledge product is expressed in manhours spent during the trial (i.e.,

during knowledge elicitation), and manhours spent after the trial (i.e., during knowledge analysis and

formulation). These costs are illustrated in Table 7.

Table 7. Manhour Cost of Knowledge Acquisitions

Analysts
Experts (Knowledge Engineers) All

Knowledge Acquisition 29.4 29.4

Analysis and Formulation 102.0

Totals 29.4 131.4 160.8

Summary

These results indicate that a form of computer-aided knowledge acquisition as instantiated by the

Smalltalk-based KEATS system prototype is effective. A total of 29 hours of expert-system interaction

(supervised by a mostly passive knowledge engineer) and 100 hours of protocol analysis produced new

knowledge on two levels. Schemas for situation assessment and overall action plans were found on an

upper or macro level. The existence of additional macro-level knowledge was inferred from differences in

plans. On a lower or micro level, 64 rules for air request tasking were identified. Additional micro-level

knowledge was identified in the form of requirements for functional changes of the ASOC facilities

replicated in KEATS.

39

IV. DISCUSSION AND CONCLUSIONS

The premise for the work reported here is that instructional content for training decision-making skills

can be acquired by means of knowledge engineering techniques.

Decision task knowledge is assumed to consist of more or less "fuzzy" rules-of-thumb, principles, or

heuristics which make it possible for Simon's (1955) "rational man;' with his limited information

processing capabilities, to perform adequately and reliably in a complex, "messy" and time-constrained

decision environment. It is this task knowledge that must be available in explicit form to the instructional

designer to enable him to devise appropriate training. Manuals or other explicit documentation may

contain isolated bits and pieces which are typically hard to separate from the primarily procedure-

oriented content found in such sources. Traditional task analysis techniques, and even techniques

specifically tailored to the elicitation of cognitive structures (Brecke et aL., 1988), are ineffective means

for externalizing expert knowledge deployed in complex cognitive tasks. Knowledge engineering methods,

however, have proven to be effective for that purpose over a wide variety of subject-matter domains.

This effort employed knowledge engineering methods to acquire instructional content. Initially, a

series of focused and structured interviews were held, taped, transcribed, and laboriously analyzed. The

structured interviews revolved around hypothetical decision scenarios or cases which were presented on

paper and maps. These "unaided" efforts were successful up to a point, although their inefficiency was a

good demonstration of the knowledge acquisition "bottleneck." A broad surface layer of knowledge about

the study domain was acquired, but attempts to achieve more depth were thwarted by the CATCH 22

problem. Some deep knowledge was required to develop elicitation stimuli which were rich and realistic

enough to elicit more deep knowledge. The knowledge engineers did not have a critical mass of that deep

knowledge to build into the paper-based cases. The latter were difficult to use since their rigid scripts

made them very fragile. Continued access to the experts was also becoming a significant problem, which

was at least partially dependent on their continuing motivation to support the project. An adequate

QUID-PRO-QUO for the efforts of the experts was deemed to be useful in this regard.

KEATS was developed as a prototypical solution to these problems. It allows experts, who have the

necessary deep knowledge, to design knowledge elicitation stimuli in the form of realistic decision

scenarios ("exercises") for a given domain. Other experts can react to these scenarios by making

decisions and by explaining the reasons behind their decisions. These reactions are captured by the system

on a detailed protocol or transcript. The degrees of complexity and realism built into the scenarios are

strictly a function of the objectives the scenario builder has in mind. KEATS supports training and mission

40

rehearsal objectives besides knowledge engineering objectives and thus offers a useful quid-pro-quo to

supporting agencies in return for their experts' time. The system should also alleviate the access in that it

runs on microcomputer hardware available to the experts at their peacetime duty stations and is equipped

with a user interface which is designed for unassisted use by computer-naive personnel.

The question is now whether the technology represented by the KEATS prototype is useful and cost

effective on a broader scale; for example, in other Tactical Command and Control nodes. The answer to

that question depends on how well the prototype worked within the study domain and on the feasibility

and cost of transferring the prototype technology to other domains. At this point in the project, there is

only enough information for a somewhat speculative analysis and projection on both counts.

Efficacy of the Prototype

Only the KNOWLEDGE ENGINEERING function of KEATS has been subjected to limited testing.

The TRAINING and BUILDING functions have not been tested by SMEs at all; neither have the

REVIEWING and ADMINISTRATING functions. The view into the issue of prototype efficacy is

therefore very narrow.

KEATS AS A PROTOTYPE SUPPORT TOOL FOR KNOWLEDGE ENGINEERING

The results of the first trial indicate that KEATS was effective as a support tool for KNOWLEDGE

ENGINEERING. A solid and fairly large increment of new knowledge was obtained within 2 days. This

knoaledge product was the result of a number of factors intrinsic to KEATS and other extrinsic factors

arising from constraints on the experts' time. Each of these factors is briefly discussed below:

MODE OF KEATS EMPLOYMENT

KEATS can be used either by an expert alone or by an expert and a knowledge engineer working

together. During the first trial, KEATS was employed in the latter mode, which, as the results show,

worked rather well. Whether and how well KEATS would work in the "expert alone" mode is still an

open question. There is reason to believe that the output might have been less in quantity and quality if

the knowledge engineer had not been there to prompt the expert with clarifying questions and to induce

the expert to type in reasonings that he had uttered orally. On the other hand, an expert working alone

might be less distracted and feel less inhibited and thus produce more natural output.

KEATS Fidelity

The functional fidelity provided by the KEATS environment was not perfect. A set of change

requirements relating to functional fidelity was identified. These fidelity distortions are expected to have a

41

distorting effect on the knowledge obtained, especially if the expert cannot implement decision options he

would use if there were better correspondence between the real world and the KEATS environment.

The potential knowledge contamination effect introduced by fidelity deficiencies is minimized if the

expert indicates where the system forced him into a decision that he would not have made in reality, and

if knowledge is validated over the course of repeated knowledge engineering sessions. The probability that

isolated fidelity distortions will produce a systematic, wholesale distortion effect rather than isolated,

occasional effects is low. Isolated distortions are identifiable because they are inconsistent with the rest of

the knowledge base.

The precise and inspectable context presented by KEATS makes fidelity breaches very obvious. Notes

regarding such breaches can be entered into the system on the spot simply by accessing a Suggestion Box.

The conveniences offered by the Smalltalk environment allow rapid and efficient implementation of

changes.

The identification of fidelity shortfalls is another form of knowledge acquisition which leads to

improvements of the functional fidelity of the KEATS environment. The first trial was only the second

time that SMEs had worked with the system. It is assumed -- and hoped -- that future system versions

will show a steeply decreasing need for changes and that eventually a "perfect" KEATS will emerge. 3

During the first trial, all instances of fidelity distortion were explicitly identified and noted. These

notes were taken into account during subsequent rule formulation. We therefore conclude that the

knowledge product of the first trial contains few, if any, distortions.

Knowledge Elicitation Questions

At the present time, KEATS has a particular knowledge elicitation strategy and a particular set of

questions built into the knowledge engineering mode. Other strategies and questions are certainly possible.

Differences in effectiveness and efficiency would have to be dtermined experimentally. The current

strategy and question set were effective in the knowledge-engineer-assisted employment mode.

Two exceptions to effectiveness were noted. The micro-level question which asks for threshold

conditions that would lead to alternative decisions was too open-ended and did not produce the desired

types of responses. It is not clear whether the question was badly worded or whether it was probing for

knowledge where none existed; i.e., the question may simply have been irrelevant to the experts.

31t is quite conceivable that system perfection and knowledge base compilation will coincide, since
the system can he perfected only when the domain is fully understood.

42

The second exception was noted on the macro level; i.e., during the Orientation Phase. Two different

experts were presented with identical situations and came up with two vastly different Plans of Action. The

differences in these plans were to some extent attributable to differences in situation assessment, but not

entirely. It appeared that the plan differences were also caused by differences in the experts' fundamental

ideas about the role and purpose of the ASOC and the basic strategies to achieve that purpose. KEATS

did not have a built-in knowledge elicitation mechanism to probe for this type of knowledge.

The issue of expert differences is clearly very important for training design. If experts are serving as

models and if these models produce widely diverging outputs in response to the same situational stimuli,

then which is the model that students should emulate? Part of the answer to this question lies in an

examination of the knowledge differences which can account for these differences in output. KEATS

should therefore include queries which probe for this type of knowledge. The most effective method

would probably consist of an initial system-presented query, followed by one or more questions generated

by a knowledge engineer.

User Input Modality

The expert has to type his responses to knowledge engineering queries. Most experts are not lery

good at typing. The process is therefore tedious, slow, and somewhat annoying. The expert may ha/c a

tendency to minimize the effort, and type as little as he feels he can get away with, instead of providing a

full and elaborate account of his reasoning. During the trial, the experts had to be reminded occasionally

to type in all they said, which may be the reason why the tapes did not contain more relevant information

than the KEATS transcripts.

Typing (i.e., expression in writing) is also much more subject to editing than is expression in speech.

The typed output may therefore be even further removed from the covert cognitive activity that actually

led to the decision. The tapes did not show that the oral output was substantively different from the

written output. How well either type of output represented the cognitive decision-making activity which

preceded it is unknown.

Basically, typing did not seem to be an obstacle to knowledge input during the trial. The process was

fairly slow but the impression was that it kept pace with the tempo of the experts' deliberations. There is

no compelling reason at this stage to change the input modality to recorded speech.

43

Protocol Mechanism

All post-trial analysis was done from the transcripts. Given the results that were achieved in terms of

distilled, formulated knowledge, one can unequivocally say that the current protocol mechanism is

effective.

On the other hand, there are a number of information items which could be gathered easily and

added to the transcript. For example, all consultations of information resources (status boards, briefings,

queries addressed to ASOC internal or external parties) could be recorded. Passage of real time could be

captured by noting the time elapsed between the presentation of an event and the entry of) decision

response. Items entered on the Notepad or in the Suggestion Box could be shown in the transcript in the

exact sequential order in which they occurred during knowledge elicitation.

Adding these items would result in a richer and more detailed protocol of the decision-making

process. Analysts could see directly what information sources were consulted and in which sequence, how

much time the expert spent with each decision problem, what he considered important for future

reference (Notepad), and exactly when and where difficulties with fidelity were encountered (Suggestion

Box). The additional information may make it easier to reconstruct the expert's decision path and

therefore aid in interpretation of his responses to knowledge elicitation and in the formulation of rules.

The enriched protocol would also aid in getting answers to follow-on questions. A more detailed

transcript (which can be inspected online in the REVIEWING mode) would make it easier for the expert

to reconstruct his train of thought and to supply additional details. It should be noted that this follow-on

questioning can be done remotely. All that is required is that the analyst and the expert have the same

exercise run loaded into their respective computers. The analyst can enter the expert's added comments

and explanations into the transcript on the spot.

Finally, enriched protocols may be of use to other researchers who are interested in unravelling basic

issues regarding the cognitive processes which occur during decision making.

Current project plans include adding more information to the transcript.

Exercises Used

The exercises used during the first trial were made up by the knowledge engineers, rather than by the

experts. The trial, therefore, did not provide a test of the assumption that expert-generated knowledge

elicitation stimuli facilitate the acquisition of deep knowledge. It did provide, however, a benchmark

reference against which future expert-generated exercises can be compared. The question as to whether

KEATS is an effective solution to the CATCH 22 problem therefore remains open.

44

The acquisition of deep knowledge requires more than realistic stimuli. It also requires repeated,

answer-dependent questions probing successively deeper layers of knowledge; i.e., a dynamic dialog

between expert and inquisitor. Although there is some promise in current work on automated knowledge

acquisition (Parsaye, 1988), practical application in a messy domain such as Tactical Command and

Control remains far in the future. KEATS does, however, support and facilitate a dynamic dialog between

a human knowledge engineer and the expert. It provides a very precise, unambiguous, inspectable, and

realistic context within which effective and efficient communication between the expert and the

knowledge engineer can take place. Our experience with both paper-based and machine-based (i.e.,

KEATS-based) cases indicates that the computer-based environment keeps knowledge elicitation much

more focused and that it reduces, if not eliminates, unproductive excursions in :he dia!og. However, since

the trial was not based on expert-generated exercises, it remains to be seen whether increased realism in

the knowledge elicitation stimuli would make the expert-inquisitor dialog more productive in terms of

depth of acquired knowledge.

Unknown at this point also is whether expert-generated exercises would indeed be much different

from the knowledge-engineer-generated exercises that were used in the first trial. Our subjective

impressions are that experts should have no problem whatsoever in developing more realistic exercises

than we did. Experts should also have little problem with the mechanical aspects of exercise development.

The BUILDING mode works flawlessly and the GUIDED submode should be very easy to master even for

computer-naive personnel. Experts may have a problem in making available the time it takes to develop

an exercise, but the BUILDING mode is probably the fastest tool currently available for constructing a

complete and realistic exercise scenario.

Current project plans call for additional knowledge engineering sessions using expert-generated

exercises.

Time

The experts could only make 2 days available for actual knowledge engineering (2 more days were

used for travel). About 7 hours were spent on each exercise (one exercise per day). During these 7 hours,

the experts completed, on the average, 73 minutes of exercise (or game) time. Each exercise covered 8

hours (i.e., the time period from early morning to late afternoon of a fictitious day in a war). This means

that only about 15% of the Operations Phase of each exercise was completed; or. expressed differently,

that time was slowed down by a factor of 7 during knowledge engineering. The Orientation Phase

consumed approximately 2 of the 7 hours spent on each exercise.

45

As a consequence, no knowledge was obtained that would elucidate how decisions change as function

of remaining daylight hours and as a function of depletion of aircraft resources. The scripts also contained

a number of specific events that were to occur around noon and in the early afternoon, which were

designed to access particular types of knowledge.

The trial, therefore, did not even begin to fully exploit the existing exercises. Complete knowledge

engineering runs for each of the existing exercises would undoubtedly yield much more knowledge and

thus provide a greater return on the investment of exercise preparation time. Given the fact that existing

exercises can be edited into completely different exercises for a fraction of the effort involved in building

an exercise from scratch, even higher cost/benefit ratios can be achieved.

Summary

The overall result of the first serious knowledge engineering application with KEATS is essentially a

proof of concept. Clearly, the system has not yet reached maturity, which is not surprising given the

complexity of the study domain. The overall design of the system as a knowledge engineering support tool

appears to be sound. The requirements for functional improvements that were brought to light by the first

trial suggest improvements of details rather than fundamental changes of concept. The detail changes are

all technicaly feasible and, due to the efficient fast prototyping environment, easy and economical to

implement.

The key issue that remains open is the effectiveness of KEATS as an instrument for breaking through

the depth barrier: i.e., in getting around the CATCH 22 problem.

KEATS AS A PROTOTYPE TRAINING SYSTEM

The ultimate goal of this project is a technology for training decision-making skills. This technology

must be tangibl, instantiated with training system prototypes. KEATS is, on the one hand, a system that

aids in the acquisition of instructional content required for building training system prototypes, and it is

also a training system prototype.

KEATS has not been subjected to a formative evaluation as a training system; i.e., data which could

give clues on its efficacy as a training system are not available. However, the technical features and

characteristics of KEATS are known and enable speculation on the subject.

Basically, KEATS is capable of presenting practice stimuli in the form of decision problems, of

enabling realistic information search activities, and of accepting decision responses. KEATS is, however,

deficient in the area of feedback. Taylor (1983), in a review of literature relevant to unaided decision

making, noted very accurately that developers of decision-making training programs face two problems:

46

"providing for consequences of decisions" and "evaluating decision making performance." KEATS does

both, but only to a limited extent.

KEATS provides for consequences of decisions by manipulating airplane availability and by adjusting

the script. Airplanes which are enroute can be tasked only by diverting them. Attrition occurs as a

function of threat. KEATS provides for realistic consequences with respect to h . air side of the battle,

but it does not provide for decision consequences in terms of the ground war. The learner's decisions will

have no influence on whether a scripted advance or retreat of opposing ground units takes place or not.

He will therefore never know whether his manipulations of the supply side had any effect on the demand

side of the equation. The features of KEATS which provide for consequences on the air side contribute

much to the knowledge engineering function by making cases more robust (i.e., impervious to deviations

from the script). They are also required for training, but by themselves, they provide a skewed, one-sided

picture.

KEATS also evaluates decision-making performance, but again, only to some extent. Nickerson and

Feehrer (1975) were adamant in suggesting that decision-making performance should be evaluated in a

partial a priori fashion; i.e., on the basis of how well the decision maker used available information at the

time the decision was made. They felt that a posteriori evaluation (i.e., evaluation based on the effec's of

the implemented decision), especially in complex domains, could not be accomplished at all since the

effects are inevitably confounded by factors not under the decision maker's control or cognizance.

KEATS does perform a partial a priori evaluation of a decision. It checks whether the decision would

violate any physical constraints and it does provide appropriate feedback. KEATS thus examines the

technical feasibility of a decision, but it has nothing to say about its tactical wisdom. If KEATS is used ith

an instructor or coach, the latter can provide that missing aspect of feedback. In the instructor-assisted

mode, KEATS can provide a full measure of a priori decision evaluation (if the instructor is qualified).

Thus, KEATS is not yet the training system that this project is aiming for (see discussion of project

goals at the end of Section I). It does satisfy the requirement of running on low-cost hardware.4 However,

it still requires an instructor for decision-making training. If and when KEATS reaches full fidelity, it will

be a fully functional procedures trainer in the stand-alone mode. Its adaptability to local needs, particular

scenarios, and individual trainee requirements as afforded by the BUILDING mode makes it more

flexible and economical than the paper-based System Training Exercises which are currently used by the

ASOC and other TACS nodes. However, as a decision training system, KEATS is merely a beginning.

4 Standard squadron-issue microcomputers need to be upgraded from 640K bytes to 4M bytes.

47

KEATS AS A WHOLE

Given the limited empirical data regarding KEATS' efficacy in either of its major functions, it is not

possible to state unequivocally whether the problems that gave rise to its development have indeed been

solved. KEATS does present robust cases for knowledge engineering and this robustness should increase

with increasing functional fidelity. The environment it presents to the experts is already convincing enough

to full), engage their operational decision-making skills. As stated before: There are no final answers on

the CATCH 22 problem; however, there is good reason to believe that KEATS can be a facilitating factor

in this regard. There are no final answers on the ACCESS and the QUID-PRO-QUO problems either.

The system has been at the ASOC for only 3 months and during most of that time, ASOC personnel were

out on exercises.

Transfer to Other Domains

The answer to the first question posed at the beginning of this discussion ("Does the prototype work in

the study domain?") is tentative and incomplete. In view of that, it may be too early to deal with the issue

of generalizability to other domains. However, the prototype concept was confirmed as basically sound,

and the knowledge product of the first trial was substantial for a first formative trial. Some speculative

extrapolation to other domains appears permissible and useful at this point.

What are such "other" domains? KEATS was designed for the ASOC domain, which was identified

as a domain that is representative of Tactical Command and Control in the Air Force. There is no

apparent reason why KEATS could not be expanded to include all the objects that the larger world of an

Allied Tactical Operations Center (ATOC) includes. By the same token, there is no reason why the same

technology that was used in KEATS could not be applied to a Wing Operations Center (WOC) or a

Tactical Air Control Party (TACP).

The key to the issue of transferability is in the modeling requirements for decision problem

presentation and for decision implementation. As long as decision input and output for a domain are in

the form of verbal messages, KEATS technology is directly applicable. It would not be directly applicable,

for example, to the decision problems in an airplane or in a nuclear power plant. In those instances,

decision input (problem presentation) is in the form of complex visual images and dial indications.

Decision output is in the form of direct control manipulations. The control manipulations must be

followed by more or less instantaneous feedback. A full simulation of the physical system is required in

these cases. Verbal decision input and output are common across the domain of Air Force Tactical

48

Command and Control and therefore KEATS is at least transferrable to other Air Force Tactical

Command and Control nodes. To the extent that the input/output conditions are satisfied, it is also

directly applicable to other decision environments.

Direct transfer or direct applicability is understood quite literally. The KEATS prototype consists of

domain- or application-specific code and generic code. The generic code (object classes) represents

about 70% of KEATS, and it is that portion that can be directly transferred to another domain. The

objects of the new domain must be added and their behavior coded as "methods." The latter is a

non-trivial undertaking but the object-oriented fast prototyping environment offered by Smalltalk reduces

labor requirements. The combination of reusable code and fast prototyping technology makes transfer to

other domains an economically attractive undertaking.

Cost effectiveness of transfer may, however, be a moot point if there is no other way to acquire the

knowledge. Our evidence suggests that knowledge acquisition for decision making in a "messy" domain

could not be done effectively, if at all, with interview-type techniques. KEATS provides the necessary

structure and precision for effective expert-knowledge engineer communication and prevents the type of

chaos that can ensue from imprecisely communicated and understood questions and answers. More han

that, a KEATS-type system grows in the course of its application as a knowledge engineering system irto a

precursor or prototype of the target training system. In this project, KEATS has provided a baseline for

what the final training system should look like and do. Our general approach to this project has therefore

become an evolutionary rather than a serial approach. It is interesting to note that a similar basic approach

is currently being pursued by the Army Research Institute (Stoddard et al., 1986), where a first training

system prototype is being used to assist in the acquisition of knowledge for a cognitive skills tutor.

V. FUTURE DIRECTIONS

By the end of the third and final project year, we hope to have implemented SuperKEATS, a

prototype decision-making training system which goes beyond the existing KEATS in a number of aspects.

SuperKEATS will represent the confluence of the three major project activities (see Figure 1): the

acquisition of instructional content (which was the subject of this report), the search for instructional

strategies, and the implementation of content and strategy within constraints imposed by existing computer

technology.

49

The most significant difference between the two systems will be in the area of feedback.

SuperKEATS will be capable of providing for decision consequences. The key to that capability is an

underlying simulation of an Army Corps' ground battle and the effects of air support on that battle. It is

hoped that scenario events will no longer be scripted but generated extemporaneously. The course of the

battle will be determined by the relative strengths of the opposing ground forces and by the amount and

effectiveness of air support supplied to friendly ground forces. The decision-making performance of the

"ASOC student" will therefore have plausible real consequences, but consequences which are not

completely determined by ASOC decisions alone (as in reality!).

SuperKEATS will hopefully also be capable of providing a priori decision evaluations which cover

tactical appropriateness (or tactical wisdom), as well as technical feasibility. The prerequisite for that

capability is a further increment of knowledge which we intend to acquire via KEATS. The near-term

target in terms of knowledge acquisition is a set of criteria which make a particular tasking decision

appropriate or inappropriate with respect to a given situation assessment and plan of action.

Given these expanded feedback capabilities, a similar user interface, a capability for constructing a

starting scenario, and an instructional strategy module that can be adjusted, SuperKEATS will be a

vehicle for decision-making training research which will allow investigation of a wide variety of issues

related to the performance of decision-making tasks, the acquisition of decision-making skills, and the

effectiveness of training strategies.

50

REFERENCES

Barnthouse, D.A. (1989). Tactical Air Operations Team Training System (TAOTTS) functional
description (Unpublished manuscript).

Brecke, F.H., Jacobs, F.B., & Krebs, J. (1988). Imoroved training of battlestaff and commandersassigned to tactical command and control (C2) systems (AFHRL-TP-87-38, AD-B123-229L).
Wright-Patterson AFB, OH: Logistics and Human Factors Division, Air Force Human Resource
Laboratory.

Frank, H.G. (1969). Kybernetische Grundlagen der Paedapogik (rev. ed.). Baden-Baden, Germany:
Agis-Verlag.

Fraser, B.D. (1987). Knowledge acquisition methodology (Technical Report 1094). San Diego, CA:
Naval Ocean Systems Center.

Hayes-Roth, F., & Waterman, D.A. (1984). An investigation of tools for building expert systems. In F.
Hayes-Roth & D.A. Waterman (Eds.), Building Exoert Systems. Reading, MA: Addison-Wesley
Publishing Company.

Johnson, P.E. (1983). What kind of expert should a system be? The Journal of Medicine and
Philosophy, a, 77-97.

Madni, A.M., Ahlers, R., & Chu, Y. (1987, December). Knowledge-based simulation: An approach to
intelligent opponent modeling for training tactical decisionmaking. In Proceedings for the Ninth
Interservice/Industry Training Systems Conference. Washington, DC: National Security Industrial
Association.

McCune, B.P. (1985). A tutorial on expert systems for battlefield applications. In Proceedings of the
Seminar on Artificial Intellivence. Aoo1lications to the Battlefield. Ft. Monmouth, NJ: Armed
Forces Communications and Electronics Association.

Merrill, M.D., & Wood, N.D. (1974, April). Instructional strategies: A toreliminary taxonomy. Paper
presented at the meeting of the Special Interest Group for Research in Mathematics Education,
American Educational Research Association, Chicago, IL.

Montague, W.E. (1986, April). ApPlication of cognitive science torinciples: Instructional heuristics and
mechanisms for use. Paper presented at the annual meeting of the American Educational Research
Association, San Francisco, CA.

Nickerson, R.S., & Feehrer, C.E. (1975). Decision-making and training: A review of theoretical and
empirical studies of decision-making and their implications for the training of decision makers
(NAVTRAEQUIPCEN 73-C-0128-1). Cambridge, MA: Bolt Beranek and Newman, Inc.

Obermayer, R.W., Johnston, D.L., Slemon, G.S., & Hicklin, M.B. (1984). Team training:
Knowledge-based simulation for team members (NAVTRAEQUIPCEN 82C-0140-1). Orlando,
FL: Naval Training Equipment Center.

Parsaye, K. (1988). Acquiring & verifying knowledge automatically. Al Expert. 48-63.

Priest, P.F. (1986, May). DARPA's AirLand Battle Management Program and USAF's Tactical Expert
Mission PLAnneR (TEMPLAR). In Advanced Computer Aids in the Planning and Execution of Air
Warfare and Ground Strike Operations: Conference Proceedings (AD-A182 096), Meeting of the
Avionics Panels of AGARD (51st), Kongsberg, Norway.

Rasmussen, J. (1986). Information processing and human-machine interaction: An approach to
cognitive engineering (Series Volume 12). New York: NorthHolland.

Schraagen, J.M.C. (1986, December). Expert differences and their implication for knowledge elicitation
technigues (Report IZF 1986-34). Kampweg 5, The Netherlands: Institute for Perception.

51

Simon, H.A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics. 6,
99-118.

Stoddard, M.L., Kern, R., & Emerson, J. (1986, March). A comnuter-based knowledge extraction
tool: A sten in the develooment of a cognitive skills tutor. Submitted to the Association for the
Development of Computer-based Instructional Systems. Alexandria, VA: U.S. Army Research
Institute for Behavioral and Social Sciences.

Taylor, E.N. (1983). A review of literature relevant to unaided tactical decision-making (Research Note
83-35). Alexandria, VA: U.S. Army Research Institute for Behavioral and Social Sciences.

Waterman, D.A. (1986). A guide to expert systems. Reading, MA: Addison Wesley Publishing
Company.

Wickens, C.D. (1984). Engineering psvchologv and human nerformance (Decision-Making, Chapter 3).
Columbus, OH: Merrill Publishing Company.

Wilson, J.O. (1982). Interactive microcomputer wargame for air battle (Master's thesis). Monterey, CA:
Naval Postgraduate School.

52

ABBREVIATIONS AND ACRONYMS

ALO Air Liaison Officer

ARTACT Armor Tactical Concepts Tutor

ASOC Air Support Operations Center

ASW Anti-Submarine Warfare

ATO Air Tasking Order

ATOC Allied Tactical Operations Center

C2 Command and Control

CAI Computer-Aided Instruction

CPX Command Post Exercise

DTG Date-Time-Group

EIDS Electronic Information Delivery System

FDO Fighter Duty Officer

FTX Field Training Exercise

ISA Initial Situation Assessment

ISD Instructional Systems Development

KEATS Knowledge Engineering and Training System

MIPS Millions of Instructions Per Second

NCO Noncommissioned Officer

OAS Offensive Air Support

00 Operations Order

POA Plan of Action

SME Subject-Matter Expert

TACC Tactical Air Control Center

TACP Tactical Air Control Party

TACS Tactical Air Control System

TAOTTS Tactical Air Operations Team Training System

TEMPLAR Tactical Expert Mission Planner

TOT Time Over Target

UCSD University of California at San Diego

WOC Wing Operations Center

53

APPENDIX

KEATS OBJECT CLASSES

S Behavior S Context

S Class S HomeContext
S MetaClass S CursorManager

S BitBIt S NoMouseCursor

S CharacterScanner S DeletedClass
S Pen
S Animation S DemoClass
S Commander S Directory

S Boolean S DiskBrowser

S False S Dispatcher
S True S PointDispatcher
C CC S ScreenDispatcher

C CCentry S ScrollDispatcher

C CCbrowser S GraphDispatcher
C ActivelmageDispatcher

S ClassBrowser S ListSelector
C ReadOnlyDispatcher

S ClassHierarchyBrowser S TextEditor
S ClassReader C InformEditor

C PopUpEditor

S Collection C NoScrollEditor
C SingleLineEditor

S Bag C PromptEditor
S IndexedCollection S TopDispatcher
S FixedSizeCollection
S Array S DispatchManager

S CompiledMethod S DisplayObject
S Bitmap S DisplayMedium
S ByteArray S Form
S FileHandle S BiColorForm
S Interval S ColorForm
S String S DisplayScreen
S Symbol S ColorScreen
S OrderedCollection S Dos
S Process
S SortedCollection C Dummy
S Set C Editor
S Dictionary C Eiro
S IdentityDictionary M Environment
S MethodDictionary Board
S SystemDictionary IntelBoard

S SymbolSet IntelLine
MissionLine

S Compiler StatusBoard
S LCompiler TacpBoard

LEGEND:

S = Srnallt5lk
C = KEATS Core, Transportable As Is
M = KEATS Core. Transportable with Minor Changes
No Code = Application Dependent

55

TacpLine WocPerson
EnvironmentEvent Director

HistoricalEvent Fac
EnvironmentType FighterDutyOff icer

AircraftType Fido I
EwEcmAcType Fido2
FacAcType G3Air
FighterAcType Intel

DivisionType LogiconPerson
OrdnanceType OtherAsoc
WxType OtherPerson

Base WxType Recce
GeneratWxType TacpPerson

M ExerciseHeader SystemnObject
GeneralBackground AtminProcess

Geography CandidateAircraft
History WOCResponseMessage
RulesAndAssumptions TacticalObject

PhysicalObject Briefing
Aircraft CommunicationsBriefing
Base DirectorBriefing
ForceUnit DirectorWrapUp

AirCommandControl FDOBriefing
Asoc FDOShiftChangeBrief ing
AtocOrTacc G3AirBriefing
Tacp IntelBriefing
Woc MaintenanceBrief ing

AirUnit RecceBriefing
F-. RecceShiftChangeBrief ing
Squadron WeatherBriefing

GroundUnit Guidance
Corps AirForceGuidance

EnemyCorps ArmyGuidance
FriendlyCorps Line

Division Flat
EnemyDivision Fscl
FriendlyDivision RipI

GroundAirThreat Mission
EnemyThreat OrderOfBattle
FriendlyThreat AirOrderOf Battle

Nature EnemyAOB
Genera IWx FriendlyAOB

CurrentGeneralWx EnemyOrderOf Battle
ForecastGeneralWx GroundOrderOf Battle

Sun EnemnyGOB
Person FriendlyGOB

Alo Orders
Arno AirCoordinationOrders
AsocPerson AirTaskingOrders
AtocWocPerson DailyOperations~rders

AtocPerson TacticalSituation

LEGEND:

56

EnemyTacticalSituation TellPutOnAlert
FriendlyTacticalSituation TellRemoveFromAlert

M Event G3AirTeI
ResponseEvent ImpendingAirAssetDepletion

AtrResponseEvent RecommendForgetPercent ages
AtrResponse UnableToMeetRequests
DeleteAtrResponseData PersonTell
MakeAtrResponseData TellOther

CommentEvent ScenarioEvent
UserComment AirUnitEvent

Assessment FlushAirUnit
OtherComment GainFighterAircraft
PlanOf Action LoseFighterAircraft
Rationale MakeAirUnitAvailable
TeilLogicon RelocateAirUnit

NoChangeActionEvent AtrEvent
AskEvent WocRefuseAtr
FactLookupEvent AtrResponseData
LookAtBriefingsEvent BaseEvent
LookAtOrdersEvent CloseBase
LookAtStatusBoardEvent OpenBase

StatusBoard Event CheckAtrEventProcessing
DeleteL-ineEvent DivisionChange
DeleteMissionLineEvent DivisionMovement

DeletelntelLineEvent EnemyThreatChange
Delet~acpventFirePriorityChange

Dlert eisiacinEvent FlotUpdate
InsertlissioLineEvent G3AirUpdate

nsertnTelciEvent GuidanceChange
n sert-le acEvent IntelUpdate

Inteieupae isvent i MakeMissionAvailable
Make upicteissionLine~vn WxEvent

MakelissioLineEvent BaseWxChange
MakentelcinEvent GeneralWxChange

Make~tacp~oEvent ForecastWxChange
M aS tatus~orE vent M SystemEvent

Misson~ne~entM EndEvent
Intell-ineEvent M StartEvent
TacpEvent M ParameterDescription

MoveMissioriLinesEvent PrintAtr
StatusBoardAirUnitsEvent Thesaurus
StatusBoardBaseEvent
StatusBoardCommentEvent S EmptySlot
StatusBoardDivisionEvent S File
StatusBoardHeaderEvent

TellEvent S Font
AtocWocTell

EstablishSmoothFlow S ForwardReforence
RecommendFlush S Icon
RecommendRelocate
TeliHoldAiroraft S InputEvent

LEGEND:

57

S Inspector TaskingOption Browser
S Debugger M VarlnConditionsBrowser
S DictionaryInspector C ModeSelectionBrowser

C ReviewBrowser
M KEATS C ReviewRunSelectionBrowser
M KEATSinterface C ReviewRunTextBrowser
M KEATS windowBrowser C ReviewUserSelectionBrowser
C Administration Browser C SuggBoxHelpBrowser
C AdminFunctionBrowser C SuggestionBoxBrowser
C Conf ig Function Browser C TrainingBrowser
C Ed itExerciseDescri ption Browser M AskTellBrowser
C PrivateExerciseBrowser ASOCvanBrowser
C PublicExerciseBrowser ATRBottomsListBrowser
C UserProfileBrowser ATRDeleteBottomBrowser
M BuiidBrowser ATRI-istBrowser
M BuildExerciseDescription BriefingBrowser
M BuildEditExerciseDescription Brief ingsList~rowser
M BuildReadExerciseDescription M Factl-ookupBrowser
M Build ExerciseSelection C HelpBrowser
M BuildFullDescription IntelBrdBrowser
M BuildOptions M MessageDeskBrowser
M BuildSelectFactTopic C NotepadBrowser
M BuildSelectScenarioTopic OrdersBrowser
M BuildVerification Ordersl-istBrowser
M FixScenario PastTaskingsBrowser
M FixScript TacpBrdBrowser
M GuldedBuild TaskedATRsBrowser
M GuidedFactlanipulation TaskingFunctionBrowser
M GuidedAilFacts Train ingStat Brd Browser
M GuidedSceriarioManipulation Bu ildStatBrd Browser
M GuidedAllScenario TrainingStatBrdSetBrowser
M GuidedScriptManipulation BuildStatBrdSel Browser
M UnguidedBuild UntaskedATRsBrowser
M UnguidedFactManipulation C TrainingExerciseSelection
M UnguidedScenarioManipulation C UserNameSelectionBrowser
M UnguidedScriptManipulation C WelcomeBrowser
M Exercise Desc ri ption Browser C Parameter
M General HelpBrowser C ListParameter

KEATSRequestBrowser C HotSpotsParameter
KEATSResponseBackground C SelectorDescription
KEATSResponseBrowser C KEATSUser

AlertResponseBrowser C KEATSutilities
GlowResponseBrowser C Formatter
RemoveAlertResponseBrowser C PopUps

M KnowledgeEngineeringBrowser C Advisor
M ActionsBrowser C ErrorAdvisor
M AssessmentPlan Browser C MenuAdvisor
M CommentsBrowser C TimeLimitlnformMenu
M ConditionsBrowser C KEATSmenu
M FactorsBrowser C ExtendedMenu
M OptionsBrowser C ConfirmMenu

LEGEND:

58

C ListEntryMenu C ButtonPane
C OptionsMenu C StringListPane
C YesNoMenu C TempELP
C KEATSprompter S TextPane
C MultiLineEntryPrompter C FillInTheBlanks
C LargeEntryPrompter C lnformPane
C SingleLineEntryPrompter C ColumnlnformPane
S Loader C NoScrollTextPane

SMgiueC SelectablelnformPane
S MgniudeC WPpane

S Association S TopPane
S Character c KEATSTopPane
S Date S Pattern
S Number
S Float S WildPattern
S Fraction S Point
S FixedNumber C Printer
S Integer
S LargeNegativeinteger C lBIVgraphics
S LargePositiveinteger C LaserJet
S Smallinteger S ProcessScheduler
S Time

C MaagerS Prompter

C AgendaManager S Rectangle
C Case S Semaphore
C CaseL-ibrarian
C CaseVerifier S Stream
C DateTime S ReadStream
S Menu S WriteStream

S ReadWriteStream
S Message S FileStream

S MethodBrowser S TerminalStream

S Pane S StrlngModel

S SubPane C WPmodel
C Extended ListPa ne C WP1 model
C Exte ndedColum nPane C Switch
S GraphPaneS etlcio
C ActivelmagePaneSTetlcio
S ListPane S UndefinedObject

LEGEND:

U.M TRINTING OFFICE: 1909-M-04119-00090

